Division of Life Science, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
EMBO Rep. 2020 Sep 3;21(9):e49801. doi: 10.15252/embr.201949801. Epub 2020 Jul 6.
Synaptic mitochondria are particularly vulnerable to physiological insults, and defects in synaptic mitochondria are linked to early pathophysiology of Alzheimer's disease (AD). Mitophagy, a cargo-specific autophagy for elimination of dysfunctional mitochondria, constitutes a key quality control mechanism. However, how mitophagy ensures synaptic mitochondrial integrity remains largely unknown. Here, we reveal Rheb and Snapin as key players regulating mitochondrial homeostasis at synapses. Rheb initiates mitophagy to target damaged mitochondria for autophagy, whereas dynein-Snapin-mediated retrograde transport promotes clearance of mitophagosomes from synaptic terminals. We demonstrate that synaptic accumulation of mitophagosomes is a feature in AD-related mutant hAPP mouse brains, which is attributed to increased mitophagy initiation coupled with impaired removal of mitophagosomes from AD synapses due to defective retrograde transport. Furthermore, while deficiency in dynein-Snapin-mediated retrograde transport recapitulates synaptic mitophagy stress and induces synaptic degeneration, elevated Snapin expression attenuates mitochondrial defects and ameliorates synapse loss in AD mouse brains. Taken together, our study provides new insights into mitophagy regulation of synaptic mitochondrial integrity, establishing a foundation for mitigating AD-associated mitochondria deficits and synaptic damage through mitophagy enhancement.
突触线粒体特别容易受到生理损伤的影响,而突触线粒体的缺陷与阿尔茨海默病(AD)的早期病理生理学有关。自噬是一种用于清除功能失调线粒体的货物特异性自噬,是一种关键的质量控制机制。然而,自噬如何确保突触线粒体的完整性在很大程度上仍是未知的。在这里,我们揭示了 Rheb 和 Snapin 作为调节突触中线粒体动态平衡的关键因子。Rheb 启动自噬以靶向受损的线粒体,而动力蛋白-Snapin 介导的逆行运输则促进了自噬小体从突触末端的清除。我们证明,AD 相关突变 hAPP 小鼠大脑中的突触内自噬小体积累是一个特征,这归因于自噬起始增加,同时由于逆行运输缺陷导致 AD 突触中自噬小体的清除受损。此外,尽管动力蛋白-Snapin 介导的逆行运输缺陷会重现突触自噬应激并诱导突触退化,但 Snapin 表达的升高可减轻线粒体缺陷并改善 AD 小鼠大脑中的突触损失。总之,我们的研究为突触线粒体完整性的自噬调节提供了新的见解,为通过增强自噬来减轻 AD 相关的线粒体缺陷和突触损伤奠定了基础。