The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
J Neurosci Res. 2019 Aug;97(8):897-913. doi: 10.1002/jnr.24411. Epub 2019 Mar 18.
The unique polarization and high-energy demand of neurons necessitates specialized mechanisms to maintain energy homeostasis throughout the cell, particularly in the distal axon. Mitochondria play a key role in meeting axonal energy demand by generating adenosine triphosphate through oxidative phosphorylation. Recent evidence demonstrates how axonal mitochondrial trafficking and anchoring are coordinated to sense and respond to altered energy requirements. If and when these mechanisms are impacted in pathological conditions, such as injury and neurodegenerative disease, is an emerging research frontier. Recent evidence also suggests that axonal energy demand may be supplemented by local glial cells, including astrocytes and oligodendrocytes. In this review, we provide an updated discussion of how oxidative phosphorylation, aerobic glycolysis, and oligodendrocyte-derived metabolic support contribute to the maintenance of axonal energy homeostasis.
神经元独特的极化特性和高能量需求需要专门的机制来维持整个细胞的能量平衡,特别是在远端轴突中。线粒体通过氧化磷酸化产生三磷酸腺苷,在满足轴突能量需求方面发挥着关键作用。最近的证据表明,轴突线粒体的运输和锚定是如何协调的,以感知和响应改变的能量需求。如果这些机制在病理条件下受到影响,如损伤和神经退行性疾病,这将是一个新兴的研究前沿。最近的证据还表明,轴突的能量需求可能由局部胶质细胞(包括星形胶质细胞和少突胶质细胞)补充。在这篇综述中,我们提供了一个最新的讨论,说明氧化磷酸化、有氧糖酵解和少突胶质细胞衍生的代谢支持如何有助于维持轴突的能量平衡。