School of Media and Communication, Shanghai Jiao Tong University, Shanghai 200240, China.
School of Music, Film, and Television, Tianjin Normal University, Tianjin 300382, China.
Comput Intell Neurosci. 2022 Jul 8;2022:7400833. doi: 10.1155/2022/7400833. eCollection 2022.
The present work aims to analyze the time-series data (TSD) from movies and support constructing the movie recommendation system. Referencing the Internet of Things (IoT) technology as the framework, a time-series data analysis system for movies is built based on the recurrent neural network (RNN) and multifractal detrended mobility cross-correlation analysis (MF-DCCA) method. First, the traditional RNN model is improved by replacing the conventional convolution operation with spatial adaptive convolution. Specifically, an additional convolution layer is used to obtain the position parameters required for adaptive convolution to improve the model performance to capture the characteristics of spatial-temporal transformation. Then, the MF-DCCA method is optimized to reduce the interference of noise signals to the analysis processing of TSD from movies. Finally, the TSD analysis system is tested for performance verification. The test results indicate that the method proposed here has outstanding stability and runs smoothly. When the prediction scheme is long short-term memory (LSTM) ( = 20), the similarity of the LSTM ( = 20) network under one frame is 0.977; the similarity of the LSTM ( = 20) network under nine frames is 0.727. This system provides a specific idea for applying the RNN model and MF-DCCA method in analyzing TSD from movies.
本工作旨在分析电影的时间序列数据(TSD),并支持构建电影推荐系统。参考物联网(IoT)技术作为框架,基于递归神经网络(RNN)和多重分形去趋势移动交叉相关分析(MF-DCCA)方法构建了电影时间序列数据分析系统。首先,通过用空间自适应卷积替代传统卷积操作,改进了传统的 RNN 模型。具体来说,使用附加的卷积层获取自适应卷积所需的位置参数,以提高模型性能,从而捕获时空变换的特征。然后,优化了 MF-DCCA 方法以减少电影 TSD 分析处理中噪声信号的干扰。最后,对 TSD 分析系统进行性能验证测试。测试结果表明,所提出的方法具有出色的稳定性,运行流畅。当预测方案为长短时记忆(LSTM)( = 20)时,一帧下 LSTM( = 20)网络的相似度为 0.977;九帧下 LSTM( = 20)网络的相似度为 0.727。该系统为将 RNN 模型和 MF-DCCA 方法应用于电影 TSD 分析提供了具体思路。