文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cannabinoids and Cannabinoid Receptors: The Story so Far.

作者信息

Shahbazi Fred, Grandi Victoria, Banerjee Abhinandan, Trant John F

机构信息

Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.

Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.

出版信息

iScience. 2020 Jul 24;23(7):101301. doi: 10.1016/j.isci.2020.101301. Epub 2020 Jun 20.


DOI:10.1016/j.isci.2020.101301
PMID:32629422
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7339067/
Abstract

Like most modern molecular biology and natural product chemistry, understanding cannabinoid pharmacology centers around molecular interactions, in this case, between the cannabinoids and their putative targets, the G-protein coupled receptors (GPCRs) cannabinoid receptor 1 (CB) and cannabinoid receptor 2 (CB). Understanding the complex structure and interplay between the partners in this molecular dance is required to understand the mechanism of action of synthetic, endogenous, and phytochemical cannabinoids. This review, with 91 references, surveys our understanding of the structural biology of the cannabinoids and their target receptors including both a critical comparison of the extant crystal structures and the computationally derived homology models, as well as an in-depth discussion about the binding modes of the major cannabinoids. The aim is to assist in situating structural biochemists, synthetic chemists, and molecular biologists who are new to the field of cannabis research.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/ceaf4c8ff0d6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/9437fc173a3e/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/96a1de50d193/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/666b96ea1db9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/cf7488fc53de/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/c943b81d6165/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/c3eca8153792/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/4cec68b994c1/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/d1a3ee315f51/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/cb54bb911ab3/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/56208cedb44e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/164d5143a8c8/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/ceaf4c8ff0d6/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/9437fc173a3e/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/96a1de50d193/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/666b96ea1db9/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/cf7488fc53de/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/c943b81d6165/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/c3eca8153792/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/4cec68b994c1/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/d1a3ee315f51/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/cb54bb911ab3/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/56208cedb44e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/164d5143a8c8/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89f2/7339067/ceaf4c8ff0d6/gr11.jpg

相似文献

[1]
Cannabinoids and Cannabinoid Receptors: The Story so Far.

iScience. 2020-7-24

[2]
Cannabis and cannabinoids: pharmacology and rationale for clinical use.

Forsch Komplementarmed. 1999-10

[3]
Pharmacological actions of cannabinoids.

Handb Exp Pharmacol. 2005

[4]
Endocannabinoids and cannabinoid receptor genetics.

Prog Neurobiol. 2002-4

[5]
Behavioral effects of cannabinoid agents in animals.

Crit Rev Neurobiol. 1999

[6]
New natural noncannabinoid ligands for cannabinoid type-2 (CB2) receptors.

J Recept Signal Transduct Res. 2006

[7]
Homology modeling of cannabinoid receptors: discovery of cannabinoid analogues for therapeutic use.

Methods Mol Biol. 2012

[8]
Natural and synthetic endocannabinoids and their structure-activity relationships.

Curr Pharm Des. 2000-9

[9]
The neurobiology and evolution of cannabinoid signalling.

Philos Trans R Soc Lond B Biol Sci. 2001-3-29

[10]
Cannabinoids Stimulate the TRP Channel-Dependent Release of Both Serotonin and Dopamine to Modulate Behavior in .

J Neurosci. 2019-3-18

引用本文的文献

[1]
Development of Carborane-Based Benzothiazole Analogues as Cannabinoid Receptor Type 2 (CBR) Ligands.

ACS Omega. 2025-8-13

[2]
Molecular Mechanisms of the Endocannabinoid System with a Focus on Reproductive Physiology and the Cannabinoid Impact on Fertility.

Int J Mol Sci. 2025-7-23

[3]
Cannabidiol polarizes human neutrophils toward a cancer-promoting phenotype.

Front Immunol. 2025-7-25

[4]
Recent Advances in the Therapeutic Potential of Cannabinoids Against Gliomas: A Systematic Review (2022-2025).

Pharmacol Res Perspect. 2025-8

[5]
How THC works: Explaining ligand affinity for, and partial agonism of, cannabinoid receptor 1.

iScience. 2025-5-21

[6]
Uncovering the molecular targets of phytocannabinoids: mechanistic insights from inverse molecular docking fingerprint approaches.

Front Pharmacol. 2025-6-27

[7]
Changes of CB1 Receptor Expression in Tissues of Cocaine-Exposed Eels.

Animals (Basel). 2025-6-12

[8]
Cannabidiol Prevents Heart Failure Dysfunction and Remodeling Through Preservation of Mitochondrial Function and Calcium Handling.

JACC Basic Transl Sci. 2025-6

[9]
Bayesian Nonparametric Analysis of Residence Times for Protein-Lipid Interactions in Molecular Dynamics Simulations.

J Chem Theory Comput. 2025-4-22

[10]
Bayesian nonparametric analysis of residence times for protein-lipid interactions in Molecular Dynamics simulations.

bioRxiv. 2025-3-4

本文引用的文献

[1]
Cannabinoid Receptor 2 (CB) Signals via G-alpha-s and Induces IL-6 and IL-10 Cytokine Secretion in Human Primary Leukocytes.

ACS Pharmacol Transl Sci. 2019-10-1

[2]
Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-G Complex Structures.

Cell. 2020-1-30

[3]
Cryo-EM Structure of the Human Cannabinoid Receptor CB2-G Signaling Complex.

Cell. 2020-1-30

[4]
Isolation of a High-Affinity Cannabinoid for the Human CB1 Receptor from a Medicinal Variety: Δ-Tetrahydrocannabutol, the Butyl Homologue of Δ-Tetrahydrocannabinol.

J Nat Prod. 2020-1-24

[5]
A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ-tetrahydrocannabinol: Δ-Tetrahydrocannabiphorol.

Sci Rep. 2019-12-30

[6]
Missing Pieces to the Endocannabinoid Puzzle.

Trends Mol Med. 2020-3

[7]
Allosteric Modulation of Cannabinoid Receptor 1-Current Challenges and Future Opportunities.

Int J Mol Sci. 2019-11-22

[8]
Cannabidiol binding and negative allosteric modulation at the cannabinoid type 1 receptor in the presence of delta-9-tetrahydrocannabinol: An In Silico study.

PLoS One. 2019-7-23

[9]
Analysis of impurities of cannabidiol from hemp. Isolation, characterization and synthesis of cannabidibutol, the novel cannabidiol butyl analog.

J Pharm Biomed Anal. 2019-7-12

[10]
Crystal Structure of the Human Cannabinoid Receptor CB2.

Cell. 2019-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索