Suppr超能文献

利用计算机视觉和深度学习在扫描探针显微镜图像上识别纳米颗粒

Nanoparticle Recognition on Scanning Probe Microscopy Images Using Computer Vision and Deep Learning.

作者信息

Okunev Alexey G, Mashukov Mikhail Yu, Nartova Anna V, Matveev Andrey V

机构信息

Novosibirsk State University Higher College of Informatics, Russkaja Str. 35, 630058 Novosibirsk, Russia.

Boreskov Institute of Catalysis SB RAS, pr. Acad. Lavrentieva, 5, 630090 Novosibirsk, Russia.

出版信息

Nanomaterials (Basel). 2020 Jun 30;10(7):1285. doi: 10.3390/nano10071285.

Abstract

Identifying, counting and measuring particles is an important component of many research studies. Images with particles are usually processed by hand using a software ruler. Automated processing, based on conventional image processing methods (edge detection, segmentation, etc.) are not universal, can only be used on good-quality images and need to set a number of parameters empirically. In this paper, we present results from the application of deep learning to automated recognition of metal nanoparticles deposited on highly oriented pyrolytic graphite on images obtained by scanning tunneling microscopy (STM). We used the Cascade Mask-RCNN neural network. Training was performed on a dataset containing 23 STM images with 5157 nanoparticles. Three images containing 695 nanoparticles were used for verification. As a result, the trained neural network recognized nanoparticles in the verification set with 0.93 precision and 0.78 recall. Predicted contour refining with 2D Gaussian function was a proposed option. The accuracies for mean particle size calculated from predicted contours compared with ground truth were in the range of 0.87-0.99. The results were compared with outcomes from other generally available software, based on conventional image processing methods. The advantages of deep learning methods for automatic particle recognition were clearly demonstrated. We developed a free open-access web service "ParticlesNN" based on the trained neural network, which can be used by any researcher in the world.

摘要

识别、计数和测量颗粒是许多研究的重要组成部分。带有颗粒的图像通常使用软件标尺手动处理。基于传统图像处理方法(边缘检测、分割等)的自动化处理并不通用,只能用于高质量图像,并且需要凭经验设置许多参数。在本文中,我们展示了深度学习在通过扫描隧道显微镜(STM)获得的图像上自动识别沉积在高度定向热解石墨上的金属纳米颗粒的应用结果。我们使用了级联掩码区域卷积神经网络(Cascade Mask-RCNN)。在一个包含23张STM图像和5157个纳米颗粒的数据集上进行了训练。使用了三张包含695个纳米颗粒的图像进行验证。结果,训练后的神经网络在验证集中识别纳米颗粒的精确率为0.93,召回率为0.78。提出了用二维高斯函数细化预测轮廓的方法。根据预测轮廓计算的平均粒径与真实值相比的准确率在0.87 - 0.99范围内。将结果与基于传统图像处理方法的其他通用软件的结果进行了比较。深度学习方法在自动颗粒识别方面的优势得到了明显体现。我们基于训练后的神经网络开发了一个免费的开放获取网络服务“ParticlesNN”,世界上任何研究人员都可以使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a65/7408120/39b4a0574b11/nanomaterials-10-01285-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验