Suppr超能文献

一种用于扫描电子显微镜图像中纳米颗粒尺寸测量的深度学习方法。

A deep learning method for nanoparticle size measurement in SEM images.

作者信息

Tao Tingwang, Ji Haining, Liu Bin

机构信息

School of Physics and Optoelectronics, Xiangtan University Xiangtan 411105 China.

Hunan Engineering Laboratory for Microelectronics, Optoelectronics and System on a Chip, Xiangtan University Xiangtan 411105 China

出版信息

RSC Adv. 2025 Jun 13;15(25):20211-20219. doi: 10.1039/d5ra03210e. eCollection 2025 Jun 10.

Abstract

Accurate characterization of nanoparticle size distribution is vital for performance modulation and practical applications. Nanoparticle size measurement in SEM images often requires manual operations, resulting in limited efficiency. Although existing semantic segmentation models enable automated measurement, challenges persist regarding small particle recognition, low-contrast region segmentation accuracy, and manual scalebar calibration needs. Therefore, we propose an improved U-Net model based on attention mechanisms and residual networks, combined with an automatic scalebar recognition algorithm, to enable accurate pixel-to-physical size conversion. The model employs ResNet50 as the backbone network and incorporates the convolutional block attention module (CBAM) module to enhance feature extraction for nanoparticles, especially small or low-contrast particles. The results show that the model achieved IoU and 1-score values of 87.79% and 93.50%, respectively, on the test set. The Spearman coefficient between the measured particle sizes and manual annotations was 0.91, with a mean relative error of 4.25%, confirming the accuracy and robustness of the method. This study presents a highly reliable automated method for nanoparticle size measurement, providing an effective tool for nanoparticle analysis and engineering applications.

摘要

准确表征纳米颗粒的尺寸分布对于性能调节和实际应用至关重要。在扫描电子显微镜(SEM)图像中测量纳米颗粒尺寸通常需要人工操作,效率有限。尽管现有的语义分割模型能够实现自动测量,但在小颗粒识别、低对比度区域分割精度以及手动比例尺校准需求等方面仍然存在挑战。因此,我们提出了一种基于注意力机制和残差网络的改进U-Net模型,并结合自动比例尺识别算法,以实现准确的像素到物理尺寸转换。该模型采用ResNet50作为骨干网络,并融入卷积块注意力模块(CBAM)来增强对纳米颗粒,特别是小颗粒或低对比度颗粒的特征提取。结果表明,该模型在测试集上的交并比(IoU)和F1分数分别达到了87.79%和93.50%。测量的颗粒尺寸与手动标注之间的斯皮尔曼系数为0.91,平均相对误差为4.25%,证实了该方法的准确性和鲁棒性。本研究提出了一种高度可靠的纳米颗粒尺寸自动测量方法,为纳米颗粒分析和工程应用提供了有效的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d58/12165009/a6f6614b7f74/d5ra03210e-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验