Suppr超能文献

利用先进的纳米表征技术对具有增强光学和催化性能的氧化铜纳米花瓣进行表面研究。

Surface Study of CuO Nanopetals by Advanced Nanocharacterization Techniques with Enhanced Optical and Catalytic Properties.

作者信息

Khan Muhammad Arif, Nayan Nafarizal, Ahmad Mohd Khairul, Soon Chin Fhong

机构信息

Microelectronics and Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat Johor 86400, Malaysia.

Department of Physics, Faculty of Basic and Applied Sciences, International Islamic University, Sector H-10, Islamabad 44000, Pakistan.

出版信息

Nanomaterials (Basel). 2020 Jul 2;10(7):1298. doi: 10.3390/nano10071298.

Abstract

In the present work, a facile one-step hydrothermal synthesis of well-defined stabilized CuO nanopetals and its surface study by advanced nanocharacterization techniques for enhanced optical and catalytic properties has been investigated. Characterization by Transmission electron microscopy (TEM) analysis confirmed existence of high crystalline CuO nanopetals with average length and diameter of 1611.96 nm and 650.50 nm, respectively. The nanopetals are monodispersed with a large surface area, controlled morphology, and demonstrate the nanocrystalline nature with a monoclinic structure. The phase purity of the as-synthesized sample was confirmed by Raman spectroscopy and X-ray diffraction (XRD) patterns. A significantly wide absorption up to 800 nm and increased band gap were observed in CuO nanopetals. The valance band (VB) and conduction band (CB) positions at CuO surface are measured to be of +0.7 and -1.03 eV, respectively, using X-ray photoelectron spectroscopy (XPS), which would be very promising for efficient catalytic properties. Furthermore, the obtained CuO nanopetals in the presence of hydrogen peroxide ( H 2 O 2 ) achieved excellent catalytic activities for degradation of methylene blue (MB) under dark, with degradation rate > 99% after 90 min, which is significantly higher than reported in the literature. The enhanced catalytic activity was referred to the controlled morphology of monodispersed CuO nanopetals, co-operative role of H 2 O 2 and energy band structure. This work contributes to a new approach for extensive application opportunities in environmental improvement.

摘要

在本工作中,研究了一种简便的一步水热合成法来制备结构明确的稳定氧化铜纳米花瓣,并通过先进的纳米表征技术对其表面进行研究,以增强光学和催化性能。透射电子显微镜(TEM)分析表征证实存在平均长度和直径分别为1611.96 nm和650.50 nm的高结晶度氧化铜纳米花瓣。这些纳米花瓣单分散,具有大表面积、可控的形态,并呈现出单斜结构的纳米晶性质。拉曼光谱和X射线衍射(XRD)图谱证实了合成样品的相纯度。在氧化铜纳米花瓣中观察到高达800 nm的显著宽吸收和增大的带隙。使用X射线光电子能谱(XPS)测得氧化铜表面的价带(VB)和导带(CB)位置分别为+0.7和-1.03 eV,这对于高效催化性能非常有前景。此外,所制备的氧化铜纳米花瓣在过氧化氢(H₂O₂)存在下,在黑暗中对亚甲基蓝(MB)的降解具有优异的催化活性,90分钟后降解率>99%,显著高于文献报道。催化活性的增强归因于单分散氧化铜纳米花瓣的可控形态、H₂O₂的协同作用和能带结构。这项工作为环境改善中的广泛应用机会提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e472/7408456/4d9aa0150e8d/nanomaterials-10-01298-sch001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验