Woźnicki Piotr, Westhoff Niklas, Huber Thomas, Riffel Philipp, Froelich Matthias F, Gresser Eva, von Hardenberg Jost, Mühlberg Alexander, Michel Maurice Stephan, Schoenberg Stefan O, Nörenberg Dominik
Experimental Radiation Oncology Group, Heidelberg University, D-68167 Mannheim, Germany.
Department of Urology and Urosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany.
Cancers (Basel). 2020 Jul 2;12(7):1767. doi: 10.3390/cancers12071767.
Radiomics is an emerging field of image analysis with potential applications in patient risk stratification. This study developed and evaluated machine learning models using quantitative radiomic features extracted from multiparametric magnetic resonance imaging (mpMRI) to detect and classify prostate cancer (PCa). In total, 191 patients that underwent prostatic mpMRI and combined targeted and systematic fusion biopsy were retrospectively included. Segmentations of the whole prostate glands and index lesions were performed manually in apparent diffusion coefficient (ADC) maps and T2-weighted MRI. Radiomic features were extracted from regions corresponding to the whole prostate gland and index lesion. The best performing combination of feature setup and classifier was selected to compare its predictive ability of the radiologist's evaluation (PI-RADS), mean ADC, prostate specific antigen density (PSAD) and digital rectal examination (DRE) using receiver operating characteristic (ROC) analysis. Models were evaluated using repeated 5-fold cross-validation and a separate independent test cohort. In the test cohort, an ensemble model combining a radiomics model, with models for PI-RADS, PSAD and DRE achieved high predictive AUCs for the differentiation of (i) malignant from benign prostatic lesions (AUC = 0.889) and of (ii) clinically significant (csPCa) from clinically insignificant PCa (cisPCa) (AUC = 0.844). Our combined model was numerically superior to PI-RADS for cancer detection (AUC = 0.779; = 0.054) as well as for clinical significance prediction (AUC = 0.688; = 0.209) and showed a significantly better performance compared to mADC for csPCa prediction (AUC = 0.571; = 0.022). In our study, radiomics accurately characterizes prostatic index lesions and shows performance comparable to radiologists for PCa characterization. Quantitative image data represent a potential biomarker, which, when combined with PI-RADS, PSAD and DRE, predicts csPCa more accurately than mADC. Prognostic machine learning models could assist in csPCa detection and patient selection for MRI-guided biopsy.
放射组学是图像分析领域中一个新兴的领域,在患者风险分层方面具有潜在应用价值。本研究开发并评估了机器学习模型,该模型使用从多参数磁共振成像(mpMRI)中提取的定量放射组学特征来检测和分类前列腺癌(PCa)。总共回顾性纳入了191例接受前列腺mpMRI检查并进行了靶向和系统融合活检的患者。在表观扩散系数(ADC)图和T2加权MRI中手动对整个前列腺腺体和索引病变进行分割。从与整个前列腺腺体和索引病变相对应的区域中提取放射组学特征。选择特征设置和分类器的最佳组合,使用受试者操作特征(ROC)分析来比较其对放射科医生评估(PI-RADS)、平均ADC、前列腺特异性抗原密度(PSAD)和直肠指检(DRE)的预测能力。使用重复的5折交叉验证和一个单独的独立测试队列对模型进行评估。在测试队列中,一个将放射组学模型与PI-RADS、PSAD和DRE模型相结合的集成模型在区分(i)前列腺恶性病变与良性病变(AUC = 0.889)以及(ii)临床显著前列腺癌(csPCa)与临床不显著前列腺癌(cisPCa)方面取得了较高的预测AUC值(AUC = 0.844)。我们的联合模型在癌症检测(AUC = 0.779;P = 0.054)以及临床意义预测(AUC = 0.688;P = 0.209)方面在数值上优于PI-RADS,并且在csPCa预测方面与平均ADC相比表现出显著更好的性能(AUC = 0.571;P = 0.022)。在我们的研究中,放射组学能够准确地表征前列腺索引病变,并且在PCa表征方面表现出与放射科医生相当的性能。定量图像数据代表一种潜在的生物标志物,当与PI-RADS、PSAD和DRE相结合时,比平均ADC更准确地预测csPCa。预后机器学习模型可以协助csPCa的检测以及MRI引导活检的患者选择。