Suppr超能文献

一种用于精确识别和Gleason分级临床显著前列腺癌的两阶段模型:一种混合方法。

A two-stage model for precise identification and Gleason grading of clinically significant prostate cancer: a hybrid approach.

作者信息

Zou Yuyan, Wang Xuechun, Ma Fen, Liu Xulun, Jiao Chunyue, Kang Zhen, Cui Jingjing, Zhang Yang, Xie Yan, Chen Lei, Tian Ronghua

机构信息

Department of Radiology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China.

Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.

出版信息

J Med Radiat Sci. 2025 Mar;72(1):93-105. doi: 10.1002/jmrs.841. Epub 2024 Dec 19.

Abstract

INTRODUCTION

Accurate identification and grading of clinically significant prostate cancer (csPCa, Gleason Score ≥ 7) without invasive procedures remains a significant clinical challenge. This study aims to develop and evaluate a two-stage model designed for precise Gleason grading. The model initially uses radiomics-based multiparametric MRI to identify csPCa and then refines the Gleason grading by integrating clinical indicators and radiomics features.

METHODS

We retrospectively analysed 399 patients with PI-RADS ≥ 3 lesions, categorising them into non-significant prostate cancer (nsPCa, 263 cases) and csPCa (136 cases, subdivided by GGs). Regions of interest (ROIs) for the prostate and lesions were manually delineated on T2-weighted and apparent diffusion coefficient (ADC) images, followed by the extraction of radiomics features. A two-stage model was developed: the first stage identifies csPCa using radiomics-based MRI, and the second integrates clinical indicators for Gleason grading. Model efficacy was evaluated by sensitivity, specificity, accuracy and area under the curve (AUC), with external validation on 100 patients.

RESULTS

The first-stage model demonstrated excellent diagnostic accuracy for csPCa, achieving AUCs of 0.989, 0.982 and 0.976 in the training, testing and external validation cohorts, respectively. The second-stage model exhibited commendable Gleason grading capabilities, with AUCs of 0.82, 0.844 and 0.83 across the same cohorts. Decision curve analysis supported the clinical applicability of both models.

CONCLUSIONS

This study validated the potential of T2W and ADC image radiomics features as biomarkers in distinguishing csPCa. Combining these features with clinical indicators for csPCa Gleason grading provides superior predictive performance and significant clinical benefit.

摘要

引言

在不进行侵入性操作的情况下准确识别和分级具有临床意义的前列腺癌(csPCa,Gleason评分≥7)仍然是一项重大的临床挑战。本研究旨在开发和评估一种用于精确Gleason分级的两阶段模型。该模型首先使用基于影像组学的多参数MRI来识别csPCa,然后通过整合临床指标和影像组学特征来细化Gleason分级。

方法

我们回顾性分析了399例PI-RADS≥3病变的患者,将他们分为非显著性前列腺癌(nsPCa,263例)和csPCa(136例,按Gleason分级细分)。在T2加权和表观扩散系数(ADC)图像上手动勾勒前列腺和病变的感兴趣区域(ROI),随后提取影像组学特征。开发了一个两阶段模型:第一阶段使用基于影像组学的MRI识别csPCa,第二阶段整合临床指标进行Gleason分级。通过敏感性、特异性、准确性和曲线下面积(AUC)评估模型效能,并在100例患者上进行外部验证。

结果

第一阶段模型对csPCa显示出优异的诊断准确性,在训练、测试和外部验证队列中的AUC分别为0.989、0.982和0.976。第二阶段模型表现出值得称赞的Gleason分级能力,在相同队列中的AUC分别为0.82、0.844和0.83。决策曲线分析支持这两个模型的临床适用性。

结论

本研究验证了T2W和ADC图像影像组学特征作为区分csPCa生物标志物的潜力。将这些特征与csPCa Gleason分级的临床指标相结合可提供卓越的预测性能和显著的临床益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c8f/11909710/ead06fddad76/JMRS-72-93-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验