Suppr超能文献

早期玉米花序发育的调控格局。

The regulatory landscape of early maize inflorescence development.

机构信息

Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.

Current address: USDA-ARS Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.

出版信息

Genome Biol. 2020 Jul 6;21(1):165. doi: 10.1186/s13059-020-02070-8.

Abstract

BACKGROUND

The functional genome of agronomically important plant species remains largely unexplored, yet presents a virtually untapped resource for targeted crop improvement. Functional elements of regulatory DNA revealed through profiles of chromatin accessibility can be harnessed for fine-tuning gene expression to optimal phenotypes in specific environments.

RESULT

Here, we investigate the non-coding regulatory space in the maize (Zea mays) genome during early reproductive development of pollen- and grain-bearing inflorescences. Using an assay for differential sensitivity of chromatin to micrococcal nuclease (MNase) digestion, we profile accessible chromatin and nucleosome occupancy in these largely undifferentiated tissues and classify at least 1.6% of the genome as accessible, with the majority of MNase hypersensitive sites marking proximal promoters, but also 3' ends of maize genes. This approach maps regulatory elements to footprint-level resolution. Integration of complementary transcriptome profiles and transcription factor occupancy data are used to annotate regulatory factors, such as combinatorial transcription factor binding motifs and long non-coding RNAs, that potentially contribute to organogenesis, including tissue-specific regulation between male and female inflorescence structures. Finally, genome-wide association studies for inflorescence architecture traits based solely on functional regions delineated by MNase hypersensitivity reveals new SNP-trait associations in known regulators of inflorescence development as well as new candidates.

CONCLUSIONS

These analyses provide a comprehensive look into the cis-regulatory landscape during inflorescence differentiation in a major cereal crop, which ultimately shapes architecture and influences yield potential.

摘要

背景

农艺重要植物物种的功能基因组在很大程度上仍未被探索,但为有针对性的作物改良提供了几乎未开发的资源。通过染色质可及性分析揭示的调控 DNA 功能元件可用于微调基因表达,以在特定环境下获得最佳表型。

结果

在这里,我们研究了花粉和籽粒花序早期生殖发育过程中玉米(Zea mays)基因组中的非编码调控空间。使用微球菌核酸酶(MNase)消化差异敏感检测法,我们对这些尚未分化的组织中的可及染色质和核小体占有率进行了分析,至少将 1.6%的基因组归类为可及性,其中大多数 MNase 超敏位点标记近端启动子,但也标记了玉米基因的 3'端。这种方法将调控元件映射到足迹水平分辨率。互补转录组图谱和转录因子占有率数据的整合用于注释调控因子,如组合转录因子结合基序和长非编码 RNA,这些因子可能有助于器官发生,包括雄性和雌性花序结构之间的组织特异性调控。最后,仅基于 MNase 超敏性界定的功能区域进行的花序结构性状全基因组关联研究揭示了花序发育的已知调控因子以及新候选因子中的新 SNP-性状关联。

结论

这些分析为主要谷物作物花序分化过程中的顺式调控景观提供了全面的了解,最终塑造了结构并影响了产量潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36bb/7336428/20441f46559c/13059_2020_2070_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验