使用基于荧光的检测方法高通量测量大肠杆菌膜电位变化。

Use of a Fluorescence-Based Assay To Measure Escherichia coli Membrane Potential Changes in High Throughput.

作者信息

Hudson M Ashley, Siegele Deborah A, Lockless Steve W

机构信息

Department of Biology, Texas A&M University, College Station, Texas, USA.

Department of Biology, Texas A&M University, College Station, Texas, USA

出版信息

Antimicrob Agents Chemother. 2020 Aug 20;64(9). doi: 10.1128/AAC.00910-20.

Abstract

Bacterial membrane potential is difficult to measure using classical electrophysiology techniques due to the small cell size and the presence of the peptidoglycan cell wall. Instead, chemical probes are often used to study membrane potential changes under conditions of interest. Many of these probes are fluorescent molecules that accumulate in a charge-dependent manner, and the resulting fluorescence change can be analyzed via flow cytometry or using a fluorescence microplate reader. Although this technique works well in many Gram-positive bacteria, it generates fairly low signal-to-noise ratios in Gram-negative bacteria due to dye exclusion by the outer membrane. We detail an optimized workflow that uses the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC(3)], to measure membrane potential changes in high throughput and describe the assay conditions that generate significant signal-to-noise ratios to detect membrane potential changes using a fluorescence microplate reader. A valinomycin calibration curve demonstrates this approach can robustly report membrane potentials over at least an ∼144-mV range with an accuracy of ∼12 mV. As a proof of concept, we used this approach to characterize the effects of some commercially available small molecules known to elicit membrane potential changes in other systems, increasing the repertoire of compounds known to perturb membrane energetics. One compound, the eukaryotic Ca channel blocker amlodipine, was found to alter membrane potential and decrease the MIC of kanamycin, further supporting the value of this screening approach. This detailed methodology permits studying membrane potential changes quickly and reliably at the population level.

摘要

由于细菌细胞体积小且存在肽聚糖细胞壁,使用经典电生理技术很难测量其膜电位。相反,化学探针常被用于研究在感兴趣条件下的膜电位变化。这些探针中有许多是荧光分子,它们以电荷依赖的方式积累,产生的荧光变化可通过流式细胞术或使用荧光酶标仪进行分析。尽管该技术在许多革兰氏阳性细菌中效果良好,但由于外膜对染料的排斥作用,在革兰氏阴性细菌中产生的信噪比相当低。我们详细介绍了一种优化的工作流程,该流程使用膜电位探针3,3'-二乙基氧杂羰花青碘化物[DiOC(3)]以高通量方式测量膜电位变化,并描述了使用荧光酶标仪产生显著信噪比以检测膜电位变化的检测条件。缬氨霉素校准曲线表明,该方法能够稳健地报告至少约144 mV范围内的膜电位,准确度约为12 mV。作为概念验证,我们使用这种方法来表征一些已知在其他系统中引起膜电位变化的市售小分子的作用,增加了已知会干扰膜能量学的化合物种类。发现一种化合物,即真核钙通道阻滞剂氨氯地平,可改变膜电位并降低卡那霉素的最低抑菌浓度,进一步支持了这种筛选方法的价值。这种详细的方法允许在群体水平上快速且可靠地研究膜电位变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索