文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从微生物组到电医学:对微生物群-肠-脑轴的影响。

From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis.

机构信息

Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.

Department of Neurosciences "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy.

出版信息

Int J Mol Sci. 2024 Jun 5;25(11):6233. doi: 10.3390/ijms25116233.


DOI:10.3390/ijms25116233
PMID:38892419
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11172653/
Abstract

The gut microbiome plays a fundamental role in metabolism, as well as the immune and nervous systems. Microbial imbalance (dysbiosis) can contribute to subsequent physical and mental pathologies. As such, interest has been growing in the microbiota-gut-brain brain axis and the bioelectrical communication that could exist between bacterial and nervous cells. The aim of this study was to investigate the bioelectrical profile (electrome) of two bacterial species characteristic of the gut microbiome: a Proteobacteria Gram-negative bacillus (), and a Firmicutes Gram-positive coccus (). We analyzed both bacterial strains to (i) validate the fluorescent probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), as a reliable reporter of the changes in membrane potential (Vmem) for both bacteria; (ii) assess the evolution of the bioelectric profile throughout the growth of both strains; (iii) investigate the effects of two neural-type stimuli on Vmem changes: the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter γ-aminobutyric acid (GABA); (iv) examine the impact of the bioelectrical changes induced by neurotransmitters on bacterial growth, viability, and cultivability using absorbance, live/dead fluorescent probes, and viable counts, respectively. Our findings reveal distinct bioelectrical profiles characteristic of each bacterial species and growth phase. Importantly, neural-type stimuli induce Vmem changes without affecting bacterial growth, viability, or cultivability, suggesting a specific bioelectrical response in bacterial cells to neurotransmitter cues. These results contribute to understanding the bacterial response to external stimuli, with potential implications for modulating bacterial bioelectricity as a novel therapeutic target.

摘要

肠道微生物群在代谢、免疫系统以及神经系统中起着至关重要的作用。微生物失衡(失调)可能导致随后的身体和心理病理。因此,人们对微生物群-肠道-大脑轴以及细菌和神经细胞之间可能存在的生物电化学通讯越来越感兴趣。本研究旨在研究两种肠道微生物群特征细菌的生物电化学特征(电生理):一种革兰氏阴性杆菌 (),一种革兰氏阳性球菌 ()。我们分析了这两种细菌菌株,以(i)验证荧光探针双(1,3-二丁基巴比妥酸)三甲氧基氧杂环丁烷,DiBAC4(3),作为两种细菌膜电位(Vmem)变化的可靠报告者;(ii)评估生物电谱在两种菌株生长过程中的演变;(iii)研究两种神经型刺激物对 Vmem 变化的影响:兴奋性神经递质谷氨酸(Glu)和抑制性神经递质γ-氨基丁酸(GABA);(iv)分别使用吸光度、活/死荧光探针和活菌计数,研究神经递质诱导的生物电变化对细菌生长、活力和可培养性的影响。我们的发现揭示了每种细菌物种和生长阶段特有的独特生物电化学特征。重要的是,神经型刺激物诱导 Vmem 变化而不影响细菌生长、活力或可培养性,这表明细菌细胞对神经递质线索有特定的生物电反应。这些结果有助于理解细菌对外界刺激的反应,为调节细菌生物电作为一种新的治疗靶点提供了潜在的依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/1f27b4859fb7/ijms-25-06233-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/22b608195604/ijms-25-06233-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/5c045e288cf5/ijms-25-06233-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/ee6bd2322f2d/ijms-25-06233-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/1f27b4859fb7/ijms-25-06233-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/22b608195604/ijms-25-06233-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/5c045e288cf5/ijms-25-06233-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/ee6bd2322f2d/ijms-25-06233-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ea/11172653/1f27b4859fb7/ijms-25-06233-g004.jpg

相似文献

[1]
From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis.

Int J Mol Sci. 2024-6-5

[2]
Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota-Brain Axis.

Int J Mol Sci. 2023-8-29

[3]
Gut microbiota alterations reveal potential gut-brain axis changes in polycystic ovary syndrome.

J Endocrinol Invest. 2021-8

[4]
Gut microbiota modulates neurotransmitter and gut-brain signaling.

Microbiol Res. 2024-10

[5]
Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer's disease.

Gut Microbes. 2024

[6]
Probiotic treatment reduces the autistic-like excitation/inhibition imbalance in juvenile hamsters induced by orally administered propionic acid and clindamycin.

Metab Brain Dis. 2018-3-27

[7]
Enterococcus faecalis Enhances Expression and Activity of the Enterohemorrhagic Escherichia coli Type III Secretion System.

mBio. 2019-11-19

[8]
Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis.

Int J Mol Sci. 2019-3-25

[9]
Microbiota-brain axis: Exploring the role of gut microbiota in psychiatric disorders - A comprehensive review.

Asian J Psychiatr. 2024-7

[10]
Neurotransmitter and Intestinal Interactions: Focus on the Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome.

Front Endocrinol (Lausanne). 2022-2-16

引用本文的文献

[1]
An in vitro neurobacterial interface reveals direct modulation of neuronal function by gut bacteria.

Sci Rep. 2025-7-15

[2]
Impact of Iron Deficiency on the Growth and Bioelectrical Profile of Different Gut Bacteria.

Microbiologyopen. 2025-6

[3]
Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review).

Oncol Lett. 2024-12-17

[4]
From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis.

Brain. 2025-5-13

本文引用的文献

[1]
Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain.

iScience. 2023-11-4

[2]
Cancer's unique bioelectric properties: From cells to body-wide networks: Comment on: "The distinguishing electrical properties of cancer cells" by Elisabetta Di Gregorio, Simone Israel, Michael Staelens, Gabriella Tankel, Karthik Shankar, and Jack A. Tuszynski (this issue).

Phys Life Rev. 2023-12

[3]
Bioelectrical State of Bacteria Is Linked to Growth Dynamics and Response to Neurotransmitters: Perspectives for the Investigation of the Microbiota-Brain Axis.

Int J Mol Sci. 2023-8-29

[4]
The role of probiotics and prebiotics in modulating of the gut-brain axis.

Front Nutr. 2023-7-26

[5]
The global human gut microbiome: genes, lifestyles, and diet.

Trends Mol Med. 2023-10

[6]
Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind.

Anim Cogn. 2023-11

[7]
Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model.

Cells. 2023-4-13

[8]
Electrochemical potential enables dormant spores to integrate environmental signals.

Science. 2022-10-7

[9]
A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes.

Microbiology (Reading). 2022-9

[10]
Gut Bacteria and Neurotransmitters.

Microorganisms. 2022-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索