Modeling, Data Analysis &Computational Tools for Biology Research Group, Biomathematics Unit, Department of Biodiversity, Ecology & Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
Department of Neurosciences "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy.
Int J Mol Sci. 2024 Jun 5;25(11):6233. doi: 10.3390/ijms25116233.
The gut microbiome plays a fundamental role in metabolism, as well as the immune and nervous systems. Microbial imbalance (dysbiosis) can contribute to subsequent physical and mental pathologies. As such, interest has been growing in the microbiota-gut-brain brain axis and the bioelectrical communication that could exist between bacterial and nervous cells. The aim of this study was to investigate the bioelectrical profile (electrome) of two bacterial species characteristic of the gut microbiome: a Proteobacteria Gram-negative bacillus (), and a Firmicutes Gram-positive coccus (). We analyzed both bacterial strains to (i) validate the fluorescent probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), as a reliable reporter of the changes in membrane potential (Vmem) for both bacteria; (ii) assess the evolution of the bioelectric profile throughout the growth of both strains; (iii) investigate the effects of two neural-type stimuli on Vmem changes: the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter γ-aminobutyric acid (GABA); (iv) examine the impact of the bioelectrical changes induced by neurotransmitters on bacterial growth, viability, and cultivability using absorbance, live/dead fluorescent probes, and viable counts, respectively. Our findings reveal distinct bioelectrical profiles characteristic of each bacterial species and growth phase. Importantly, neural-type stimuli induce Vmem changes without affecting bacterial growth, viability, or cultivability, suggesting a specific bioelectrical response in bacterial cells to neurotransmitter cues. These results contribute to understanding the bacterial response to external stimuli, with potential implications for modulating bacterial bioelectricity as a novel therapeutic target.
肠道微生物群在代谢、免疫系统以及神经系统中起着至关重要的作用。微生物失衡(失调)可能导致随后的身体和心理病理。因此,人们对微生物群-肠道-大脑轴以及细菌和神经细胞之间可能存在的生物电化学通讯越来越感兴趣。本研究旨在研究两种肠道微生物群特征细菌的生物电化学特征(电生理):一种革兰氏阴性杆菌 (),一种革兰氏阳性球菌 ()。我们分析了这两种细菌菌株,以(i)验证荧光探针双(1,3-二丁基巴比妥酸)三甲氧基氧杂环丁烷,DiBAC4(3),作为两种细菌膜电位(Vmem)变化的可靠报告者;(ii)评估生物电谱在两种菌株生长过程中的演变;(iii)研究两种神经型刺激物对 Vmem 变化的影响:兴奋性神经递质谷氨酸(Glu)和抑制性神经递质γ-氨基丁酸(GABA);(iv)分别使用吸光度、活/死荧光探针和活菌计数,研究神经递质诱导的生物电变化对细菌生长、活力和可培养性的影响。我们的发现揭示了每种细菌物种和生长阶段特有的独特生物电化学特征。重要的是,神经型刺激物诱导 Vmem 变化而不影响细菌生长、活力或可培养性,这表明细菌细胞对神经递质线索有特定的生物电反应。这些结果有助于理解细菌对外界刺激的反应,为调节细菌生物电作为一种新的治疗靶点提供了潜在的依据。
Int J Mol Sci. 2024-6-5
J Endocrinol Invest. 2021-8
Microbiol Res. 2024-10
Int J Mol Sci. 2019-3-25
Front Endocrinol (Lausanne). 2022-2-16
Microbiologyopen. 2025-6
Front Nutr. 2023-7-26
Trends Mol Med. 2023-10
Microbiology (Reading). 2022-9
Microorganisms. 2022-9-14