文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

革兰氏阴性菌膜电位测量用电压敏感染料指南。

A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes.

机构信息

Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.

Institute for Biology - Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Microbiology (Reading). 2022 Sep;168(9). doi: 10.1099/mic.0.001227.


DOI:10.1099/mic.0.001227
PMID:36165741
Abstract

Transmembrane potential is one of the main bioenergetic parameters of bacterial cells, and is directly involved in energizing key cellular processes such as transport, ATP synthesis and motility. The most common approach to measure membrane potential levels is through use of voltage-sensitive fluorescent dyes. Such dyes either accumulate or are excluded from the cell in a voltage-dependent manner, which can be followed by means of fluorescence microscopy, flow cytometry, or fluorometry. Since the cell's ability to maintain transmembrane potential relies upon low and selective membrane ion conductivity, voltage-sensitive dyes are also highly sensitive reporters for the activity of membrane-targeting antibacterials. However, the presence of an additional membrane layer in Gram-negative (diderm) bacteria complicates their use significantly. In this paper, we provide guidance on how membrane potential and its changes can be monitored reliably in Gram-negatives using the voltage-sensitive dye 3,3'-dipropylthiadicarbocyanine iodide [DiSC(5)]. We also discuss the confounding effects caused by the presence of the outer membrane, or by measurements performed in buffers rather than growth medium. We hope that the discussed methods and protocols provide an easily accessible basis for the use of voltage-sensitive dyes in Gram-negative organisms, and raise awareness of potential experimental pitfalls associated with their use.

摘要

跨膜电位是细菌细胞的主要生物能量参数之一,直接参与为关键细胞过程(如运输、ATP 合成和运动)供能。测量膜电位水平最常用的方法是使用电压敏感型荧光染料。这些染料以电压依赖的方式在细胞内外积累或排除,这可以通过荧光显微镜、流式细胞术或荧光计进行跟踪。由于细胞维持跨膜电位的能力依赖于低且选择性的膜离子导电性,因此电压敏感型染料也是针对靶向抗菌药物的膜活性的高度敏感报告器。然而,革兰氏阴性(双壁)细菌中额外的膜层的存在显著增加了其使用的复杂性。在本文中,我们提供了使用电压敏感型染料 3,3'-二丙基噻二碳菁碘化物 [DiSC(5)] 可靠监测革兰氏阴性菌中膜电位及其变化的指导。我们还讨论了由外膜的存在或在缓冲液中而不是在生长培养基中进行测量引起的混淆效应。我们希望所讨论的方法和方案为革兰氏阴性生物中电压敏感型染料的使用提供了一个易于访问的基础,并提高了对其使用相关潜在实验陷阱的认识。

相似文献

[1]
A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes.

Microbiology (Reading). 2022-9

[2]
Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes.

J Vis Exp. 2014-2-17

[3]
The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells.

Plant J. 2008-7

[4]
Fluorometric assessment of gram-negative bacterial permeabilization.

J Appl Microbiol. 2000-2

[5]
Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin.

Int J Food Microbiol. 2000-9-25

[6]
Probing the transmembrane potential of bacterial cells by voltage-sensitive dyes.

Anal Sci. 2003-9

[7]
Analysis of Antimicrobial-Triggered Membrane Depolarization Using Voltage Sensitive Dyes.

Front Cell Dev Biol. 2016-4-13

[8]
Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes.

Antonie Van Leeuwenhoek. 2011-6-30

[9]
Use of a Fluorescence-Based Assay To Measure Escherichia coli Membrane Potential Changes in High Throughput.

Antimicrob Agents Chemother. 2020-8-20

[10]
The use of fluorescent dyes to measure membrane potentials: a critique.

J Cell Physiol. 1982-8

引用本文的文献

[1]
Antibacterial activity and mechanism of naphthoquine phosphate against ceftazidime-resistant via cell membrane disruption and ROS induction.

Front Microbiol. 2025-8-4

[2]
Antimicrobial mechanism of plasma activated water treatment of pathogenic and biofilms.

Biofilm. 2025-7-7

[3]
Unlocking the power of membrane biophysics: enhancing the study of antimicrobial peptides activity and selectivity.

Biophys Rev. 2025-4-12

[4]
Emergence of ion-channel-mediated electrical oscillations in biofilms.

Elife. 2025-3-21

[5]
Class IIb Microcin MccM Interferes with Oxidative Phosphorylation in .

ACS Chem Biol. 2024-9-20

[6]
From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis.

Int J Mol Sci. 2024-6-5

[7]
Inhibition of multiple staphylococcal growth states by a small molecule that disrupts membrane fluidity and voltage.

mSphere. 2024-3-26

[8]
Min oscillations in bacteria as real-time reporter of environmental challenges at the single-cell level.

Open Biol. 2023-7

[9]
SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner.

PLoS Pathog. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索