Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Center for Microbial Research, Umeå University, Umeå, Sweden.
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
J Bacteriol. 2020 Nov 19;202(24). doi: 10.1128/JB.00243-20.
Both fermentative and respiratory processes contribute to bacterial metabolic adaptations to low oxygen tension (hypoxia). In the absence of O as a respiratory electron sink, many bacteria utilize alternative electron acceptors, such as nitrate (NO). During canonical NO respiration, NO is reduced in a stepwise manner to N by a dedicated set of reductases. , the etiological agent of cholera, requires only a single periplasmic NO reductase (NapA) to undergo NO respiration, suggesting that the pathogen possesses a noncanonical NO respiratory chain. In this study, we used complementary transposon-based screens to identify genetic determinants of general hypoxic growth and NO respiration in We found that while the NO respiratory chain is primarily composed of homologues of established NO respiratory genes, it also includes components previously unlinked to this process, such as the Na-NADH dehydrogenase Nqr. The ethanol-generating enzyme AdhE was shown to be the principal fermentative branch required during hypoxic growth in Relative to single or mutant strains, a strain lacking both genes exhibited severely impaired hypoxic growth and Our findings reveal the genetic basis of a specific interaction between disparate energy production pathways that supports pathogen fitness under shifting conditions. Such metabolic specializations in and other pathogens are potential targets for antimicrobial interventions. Bacteria reprogram their metabolism in environments with low oxygen levels (hypoxia). Typically, this occurs via regulation of two major, but largely independent, metabolic pathways: fermentation and respiration. In this study, we found that the diarrheal pathogen has a respiratory chain for NO that consists largely of components found in other NO respiratory systems but also contains several proteins not previously linked to this process. Both AdhE-dependent fermentation and NO respiration were required for efficient pathogen growth under both laboratory conditions and in an animal infection model. These observations provide a specific example of fermentative respiratory interactions and identify metabolic vulnerabilities that may be targetable for new antimicrobial agents in and related pathogens.
发酵和呼吸过程都有助于细菌对低氧张力(缺氧)的代谢适应。在没有 O 作为呼吸电子受体的情况下,许多细菌利用替代电子受体,如硝酸盐(NO)。在典型的 NO 呼吸过程中,NO 被一系列专用的还原酶逐步还原为 N。霍乱的病原体,只需要一个单一的周质 NO 还原酶(NapA)就能进行 NO 呼吸,这表明病原体具有非典型的 NO 呼吸链。在这项研究中,我们使用互补的转座子为基础的筛选来鉴定 在 中一般缺氧生长和 NO 呼吸的遗传决定因素。我们发现,虽然 的 NO 呼吸链主要由已建立的 NO 呼吸基因的同源物组成,但它还包括以前与该过程无关的成分,如 Na-NADH 脱氢酶 Nqr。乙醇生成酶 AdhE 被证明是缺氧生长中主要的发酵分支 在 与单个 或 突变株相比,缺乏这两个基因的 株的缺氧生长严重受损,我们的研究结果揭示了不同能量产生途径之间特定相互作用的遗传基础,这种相互作用支持病原体在不断变化的条件下适应。 在 和其他病原体中,这种代谢特化是抗菌干预的潜在目标。细菌在低氧环境中(缺氧)重新编程它们的新陈代谢。通常,这是通过调节两种主要的、但在很大程度上独立的代谢途径来实现的:发酵和呼吸。在这项研究中,我们发现腹泻病原体 有一个主要由其他 NO 呼吸系统中发现的成分组成的 NO 呼吸链,但也包含几个以前与该过程无关的蛋白质。在实验室条件下和动物感染模型中,AdhE 依赖性发酵和 NO 呼吸都需要有效地促进病原体生长。这些观察结果提供了发酵呼吸相互作用的具体例子,并确定了代谢脆弱性,这可能是在 和相关病原体中针对新抗菌剂的目标。