The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095, Nanjing, China.
ISME J. 2020 Oct;14(10):2610-2624. doi: 10.1038/s41396-020-0709-0. Epub 2020 Jul 6.
Fungal evolutionary biology is impeded by the scarcity of fossils, irregular life cycles, immortality, and frequent asexual reproduction. Simple and diminutive bodies of fungi develop inside a substrate and have exceptional metabolic and ecological plasticity, which hinders species delimitation. However, the unique fungal traits can shed light on evolutionary forces that shape the environmental adaptations of these taxa. Higher filamentous fungi that disperse through aerial spores produce amphiphilic and highly surface-active proteins called hydrophobins (HFBs), which coat spores and mediate environmental interactions. We exploited a library of HFB-deficient mutants for two cryptic species of mycoparasitic and saprotrophic fungi from the genus Trichoderma (Hypocreales) and estimated fungal development, reproductive potential, and stress resistance. HFB4 and HFB10 were found to be relevant for Trichoderma fitness because they could impact the spore-mediated dispersal processes and control other fitness traits. An analysis in silico revealed purifying selection for all cases except for HFB4 from T. harzianum, which evolved under strong positive selection pressure. Interestingly, the deletion of the hfb4 gene in T. harzianum considerably increased its fitness-related traits. Conversely, the deletion of hfb4 in T. guizhouense led to the characteristic phenotypes associated with relatively low fitness. The net contribution of the hfb4 gene to fitness was found to result from evolutionary tradeoffs between individual traits. Our analysis of HFB-dependent fitness traits has provided an evolutionary snapshot of the selective pressures and speciation process in closely related fungal species.
真菌进化生物学受到化石稀缺、生命周期不规则、不朽和频繁的无性繁殖等因素的阻碍。真菌的简单和微小的体积极大地发展在基质内,并具有非凡的代谢和生态可塑性,这阻碍了物种的界定。然而,真菌独特的特征可以揭示塑造这些分类群环境适应的进化力量。通过空气孢子分散的较高丝状真菌会产生具有两亲性和高度表面活性的蛋白质,称为疏水性蛋白(HFBs),它覆盖孢子并介导环境相互作用。我们利用 HFB 缺陷突变体文库,研究了两个来自拟青霉属(Hypocreales)的真菌——菌寄生和腐生真菌的隐种,并估计了真菌的发育、繁殖潜力和抗应激能力。发现 HFB4 和 HFB10 与 Trichoderma 的适应性相关,因为它们可能影响孢子介导的扩散过程,并控制其他适应性特征。除了 Trichoderma harzianum 的 HFB4 外,所有情况下的分析都表明存在纯化选择,而 T. harzianum 则受到强烈的正选择压力的影响。有趣的是,T. harzianum 中 hfb4 基因的缺失大大增加了其与适应性相关的特征。相反,T. guizhouense 中 hfb4 基因的缺失导致与相对较低适应性相关的特征表型。发现 hfb4 基因对适应性的净贡献是由于个体特征之间的进化权衡造成的。我们对 HFB 依赖的适应性特征的分析提供了一个关于密切相关真菌物种选择压力和物种形成过程的进化快照。