Suppr超能文献

迈向生命周期评估中的自动化库存建模:语义数据建模在预测实际化学品生产中的效用。

Toward Automated Inventory Modeling in Life Cycle Assessment: The Utility of Semantic Data Modeling to Predict Real-World Chemical Production.

作者信息

Mittal Vinit K, Bailin Sidney C, Gonzalez Michael A, Meyer David E, Barrett William M, Smith Raymond L

机构信息

Oak Ridge Institute of Science and Education (ORISE), Hosted by U.S. Environmental Protection Agency, Office of Research and Development, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States.

Knowledge Evolution, Inc., 1748 Seaton Street NW, Washington, D.C. 20009, United States.

出版信息

ACS Sustain Chem Eng. 2017 Dec 6;6(2):1961-1976. doi: 10.1021/acssuschemeng.7b03379.

Abstract

A set of coupled semantic data models, i.e., ontologies, are presented to advance a methodology toward automated inventory modeling of chemical manufacturing in life cycle assessment. The cradle-to-gate life cycle inventory for chemical manufacturing is a detailed collection of the material and energy flows associated with a chemical's supply chain. Thus, there is a need to manage data describing both the lineage (or synthesis pathway) and processing conditions for a chemical. To this end, a Lineage ontology is proposed to reveal all the synthesis steps required to produce a chemical from raw materials, such as crude oil or biomaterials, while a Process ontology is developed to manage data describing the various unit processes associated with each synthesis step. The two ontologies are coupled such that process data, which is the basis for inventory modeling, is linked to lineage data through key concepts like the chemical reaction and reaction participants. To facilitate automated inventory modeling, a series of SPARQL queries, based on the concepts of ancestor and parent, are presented to generate a lineage for a chemical of interest from a set of reaction data. The proposed ontologies and SPARQL queries are evaluated and tested using a case study of nylon-6 production. Once a lineage is established, the process ontology can be used to guide inventory modeling based on both data mining (top-down) and simulation (bottom-up) approaches. The ability to generate a cradle-to-gate life cycle for a chemical represents a key achievement toward the ultimate goal of automated life cycle inventory modeling.

摘要

提出了一组耦合语义数据模型,即本体,以推进一种用于生命周期评估中化学制造自动化库存建模的方法。化学制造从摇篮到大门的生命周期清单是与化学品供应链相关的物质和能量流的详细集合。因此,需要管理描述化学品的谱系(或合成途径)和加工条件的数据。为此,提出了一种谱系本体,以揭示从原油或生物材料等原材料生产化学品所需的所有合成步骤,同时开发了一种过程本体来管理描述与每个合成步骤相关的各种单元过程的数据。这两个本体相互耦合,使得作为库存建模基础的过程数据通过化学反应和反应参与者等关键概念与谱系数据相链接。为了促进自动化库存建模,提出了一系列基于祖先和父概念的SPARQL查询,以便从一组反应数据中生成感兴趣化学品的谱系。使用尼龙-6生产的案例研究对所提出的本体和SPARQL查询进行了评估和测试。一旦建立了谱系,过程本体就可用于基于数据挖掘(自上而下)和模拟(自下而上)方法来指导库存建模。生成化学品从摇篮到大门的生命周期的能力代表了朝着自动化生命周期库存建模的最终目标迈出的关键一步。

相似文献

2
Enhancing life cycle chemical exposure assessment through ontology modeling.通过本体建模增强生命周期化学物质暴露评估。
Sci Total Environ. 2020 Apr 10;712:136263. doi: 10.1016/j.scitotenv.2019.136263. Epub 2019 Dec 27.
6
Cradle-to-gate life cycle inventory of vancomycin hydrochloride.万古霉素盐酸盐的摇篮到大门生命周期清单。
Sci Total Environ. 2010 Feb 15;408(6):1331-7. doi: 10.1016/j.scitotenv.2009.10.057. Epub 2009 Nov 26.

本文引用的文献

2
Prediction of Organic Reaction Outcomes Using Machine Learning.使用机器学习预测有机反应结果
ACS Cent Sci. 2017 May 24;3(5):434-443. doi: 10.1021/acscentsci.7b00064. Epub 2017 Apr 18.
3
Neural Networks for the Prediction of Organic Chemistry Reactions.用于预测有机化学反应的神经网络。
ACS Cent Sci. 2016 Oct 26;2(10):725-732. doi: 10.1021/acscentsci.6b00219. Epub 2016 Oct 14.
5
Computer-Assisted Synthetic Planning: The End of the Beginning.计算机辅助综合规划:开端的终结。
Angew Chem Int Ed Engl. 2016 May 10;55(20):5904-37. doi: 10.1002/anie.201506101. Epub 2016 Apr 8.
7
Answering the call for improved chemical alternatives assessments (CAA).
Environ Sci Technol. 2015 Feb 17;49(4):1995-6. doi: 10.1021/es505446x. Epub 2015 Jan 27.
8
Parallel optimization of synthetic pathways within the network of organic chemistry.有机化学网络内合成途径的并行优化。
Angew Chem Int Ed Engl. 2012 Aug 6;51(32):7928-32. doi: 10.1002/anie.201202209. Epub 2012 Jul 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验