Suppr超能文献

一种基于本体的方法,用于将按照欧洲规范/国际标准化组织13606(EN/ISO 13606)标准化的患者数据整合到联合观察性医学转归合作组织(OMOP)知识库中:方法描述。

An Ontology-Based Approach for Consolidating Patient Data Standardized With European Norm/International Organization for Standardization 13606 (EN/ISO 13606) Into Joint Observational Medical Outcomes Partnership (OMOP) Repositories: Description of a Methodology.

作者信息

Frid Santiago, Pastor Duran Xavier, Bracons Cucó Guillem, Pedrera-Jiménez Miguel, Serrano-Balazote Pablo, Muñoz Carrero Adolfo, Lozano-Rubí Raimundo

机构信息

Medical Informatics Unit, Hospital Clínic de Barcelona, Barcelona, Spain.

Clinical Foundations Department, Universitat de Barcelona, Barcelona, Spain.

出版信息

JMIR Med Inform. 2023 Mar 8;11:e44547. doi: 10.2196/44547.

Abstract

BACKGROUND

To discover new knowledge from data, they must be correct and in a consistent format. OntoCR, a clinical repository developed at Hospital Clínic de Barcelona, uses ontologies to represent clinical knowledge and map locally defined variables to health information standards and common data models.

OBJECTIVE

The aim of the study is to design and implement a scalable methodology based on the dual-model paradigm and the use of ontologies to consolidate clinical data from different organizations in a standardized repository for research purposes without loss of meaning.

METHODS

First, the relevant clinical variables are defined, and the corresponding European Norm/International Organization for Standardization (EN/ISO) 13606 archetypes are created. Data sources are then identified, and an extract, transform, and load process is carried out. Once the final data set is obtained, the data are transformed to create EN/ISO 13606-normalized electronic health record (EHR) extracts. Afterward, ontologies that represent archetyped concepts and map them to EN/ISO 13606 and Observational Medical Outcomes Partnership Common Data Model (OMOP CDM) standards are created and uploaded to OntoCR. Data stored in the extracts are inserted into its corresponding place in the ontology, thus obtaining instantiated patient data in the ontology-based repository. Finally, data can be extracted via SPARQL queries as OMOP CDM-compliant tables.

RESULTS

Using this methodology, EN/ISO 13606-standardized archetypes that allow for the reuse of clinical information were created, and the knowledge representation of our clinical repository by modeling and mapping ontologies was extended. Furthermore, EN/ISO 13606-compliant EHR extracts of patients (6803), episodes (13,938), diagnosis (190,878), administered medication (222,225), cumulative drug dose (222,225), prescribed medication (351,247), movements between units (47,817), clinical observations (6,736,745), laboratory observations (3,392,873), limitation of life-sustaining treatment (1,298), and procedures (19,861) were created. Since the creation of the application that inserts data from extracts into the ontologies is not yet finished, the queries were tested and the methodology was validated by importing data from a random subset of patients into the ontologies using a locally developed Protégé plugin ("OntoLoad"). In total, 10 OMOP CDM-compliant tables ("Condition_occurrence," 864 records; "Death," 110; "Device_exposure," 56; "Drug_exposure," 5609; "Measurement," 2091; "Observation," 195; "Observation_period," 897; "Person," 922; "Visit_detail," 772; and "Visit_occurrence," 971) were successfully created and populated.

CONCLUSIONS

This study proposes a methodology for standardizing clinical data, thus allowing its reuse without any changes in the meaning of the modeled concepts. Although this paper focuses on health research, our methodology suggests that the data be initially standardized per EN/ISO 13606 to obtain EHR extracts with a high level of granularity that can be used for any purpose. Ontologies constitute a valuable approach for knowledge representation and standardization of health information in a standard-agnostic manner. With the proposed methodology, institutions can go from local raw data to standardized, semantically interoperable EN/ISO 13606 and OMOP repositories.

摘要

背景

为了从数据中发现新知识,数据必须准确且格式一致。巴塞罗那临床医院开发的临床知识库OntoCR利用本体来表示临床知识,并将本地定义的变量映射到健康信息标准和通用数据模型。

目的

本研究的目的是设计并实施一种基于双模型范式和本体使用的可扩展方法,以便在标准化知识库中整合来自不同组织的临床数据用于研究目的,同时不损失数据含义。

方法

首先,定义相关临床变量,并创建相应的欧洲规范/国际标准化组织(EN/ISO)13606原型。然后识别数据源,并执行提取、转换和加载过程。一旦获得最终数据集,就对数据进行转换以创建符合EN/ISO 13606标准的电子健康记录(EHR)提取物。之后,创建表示原型概念并将其映射到EN/ISO 13606和观察性医疗结果伙伴关系通用数据模型(OMOP CDM)标准的本体,并上传到OntoCR。提取物中存储的数据被插入到本体中的相应位置,从而在基于本体的知识库中获得实例化的患者数据。最后,可以通过SPARQL查询将数据提取为符合OMOP CDM的表格。

结果

使用这种方法,创建了允许临床信息重用的符合EN/ISO 13606标准的原型,并通过对本体进行建模和映射扩展了我们临床知识库的知识表示。此外,创建了符合EN/ISO 13606标准的患者(6803例)、医疗事件(13938例)、诊断(190878例)、给药(222225例)、累积药物剂量(222225例)、处方药物(351247例)、科室间转移(出入院)(47817例)、临床观察(6736745例)、实验室检查(3392873例)、维持生命治疗限制(1298例)和医疗程序(19861例)的EHR提取物。由于将提取物中的数据插入本体的应用程序尚未完成,因此通过使用本地开发的Protégé插件(“OntoLoad”)将来自随机抽取的患者子集的数据导入本体来测试查询并验证该方法。总共成功创建并填充了10个符合OMOP CDM的表格(“病情发生”,864条记录;“死亡”,110条;“器械暴露”,56条;“药物暴露”,5609条;“测量”,2091条;“观察”,195条;“观察期”,897条;“人员”,922条;“就诊详情”,772条;“就诊事件”,971条)。

结论

本研究提出了一种标准化临床数据的方法,从而允许在不改变建模概念含义的情况下对其进行重用。尽管本文侧重于健康研究,但我们的方法表明,数据应首先按照EN/ISO 13606进行标准化,以获得具有高粒度水平的EHR提取物,可用于任何目的。本体是以与标准无关的方式进行知识表示和健康信息标准化的一种有价值的方法。通过所提出的方法,机构可以从本地原始数据转换为标准化的、语义可互操作的符合EN/ISO 13606和OMOP的知识库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1132/10034609/59e42d2e0ab7/medinform_v11i1e44547_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验