Suppr超能文献

纠正大脑?神经科学、神经技术、精神病学和人工智能的融合。

Correcting the Brain? The Convergence of Neuroscience, Neurotechnology, Psychiatry, and Artificial Intelligence.

机构信息

Oxford Uehiro Centre for Practical Ethics, Suite 8, Littlegate House, St Ebbes Street, Oxford, OX1 1PT, UK.

St. Mary's University, Twickenham, UK.

出版信息

Sci Eng Ethics. 2020 Oct;26(5):2439-2454. doi: 10.1007/s11948-020-00240-2.

Abstract

The incorporation of neural-based technologies into psychiatry offers novel means to use neural data in patient assessment and clinical diagnosis. However, an over-optimistic technologisation of neuroscientifically-informed psychiatry risks the conflation of technological and psychological norms. Neurotechnologies promise fast, efficient, broad psychiatric insights not readily available through conventional observation of patients. Recording and processing brain signals provides information from 'beneath the skull' that can be interpreted as an account of neural processing and that can provide a basis to evaluate general behaviour and functioning. But it ought not to be forgotten that the use of such technologies is part of a human practice of neuroscience informed psychiatry. This paper notes some challenges in the integration of neural technologies into psychiatry and suggests vigilance particularly in respect to normative challenges. In this way, psychiatry can avoid a drift toward reductive technological approaches, while nonetheless benefitting from promising advances in neuroscience and technology.

摘要

将基于神经的技术纳入精神病学提供了新颖的方法,可在患者评估和临床诊断中使用神经数据。然而,对神经科学为基础的精神病学过分乐观的技术化,可能会将技术和心理规范混淆起来。神经技术承诺快速、高效、广泛的精神病学见解,而这些见解通过传统的患者观察是不容易获得的。记录和处理脑信号提供了来自“颅骨下”的信息,可以将其解释为神经处理的描述,并可以为评估一般行为和功能提供依据。但不应忘记,此类技术的使用是神经科学为基础的精神病学的人类实践的一部分。本文指出了将神经技术纳入精神病学所面临的一些挑战,并建议特别注意规范方面的挑战。通过这种方式,精神病学可以避免向还原技术方法的漂移,同时也可以从神经科学和技术的有希望的进步中受益。

相似文献

6
Emulating future neurotechnology using magic.用魔法模拟未来神经技术。
Conscious Cogn. 2023 Jan;107:103450. doi: 10.1016/j.concog.2022.103450. Epub 2022 Dec 23.
9
Clinical neuroscience and neurotechnology: An amazing symbiosis.临床神经科学与神经技术:一种惊人的共生关系。
iScience. 2022 Sep 16;25(10):105124. doi: 10.1016/j.isci.2022.105124. eCollection 2022 Oct 21.

本文引用的文献

2
Machine Learning for Neural Decoding.机器学习在神经解码中的应用。
eNeuro. 2020 Aug 31;7(4). doi: 10.1523/ENEURO.0506-19.2020. Print 2020 Jul/Aug.
5
Mind Reading and Writing: The Future of Neurotechnology.读心与写作:神经科技的未来。
Trends Cogn Sci. 2018 Jul;22(7):598-610. doi: 10.1016/j.tics.2018.04.001. Epub 2018 May 2.
6
Machine Learning for Precision Psychiatry: Opportunities and Challenges.机器学习在精准精神医学中的机遇与挑战。
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Mar;3(3):223-230. doi: 10.1016/j.bpsc.2017.11.007. Epub 2017 Dec 6.
7
Machine Learning Approaches for Clinical Psychology and Psychiatry.机器学习在临床心理学和精神病学中的应用。
Annu Rev Clin Psychol. 2018 May 7;14:91-118. doi: 10.1146/annurev-clinpsy-032816-045037. Epub 2018 Jan 29.
8
Advances in closed-loop deep brain stimulation devices.闭环深部脑刺激装置的进展
J Neuroeng Rehabil. 2017 Aug 11;14(1):79. doi: 10.1186/s12984-017-0295-1.
10
Closed-loop brain training: the science of neurofeedback.闭环脑训练:神经反馈的科学。
Nat Rev Neurosci. 2017 Feb;18(2):86-100. doi: 10.1038/nrn.2016.164. Epub 2016 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验