Suppr超能文献

使用 F-DOPA-PET 成像的放射组学特征提取预测胶质母细胞瘤患者的 MGMT 状态。

Prediction of MGMT Status for Glioblastoma Patients Using Radiomics Feature Extraction From F-DOPA-PET Imaging.

机构信息

Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.

Department of Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota.

出版信息

Int J Radiat Oncol Biol Phys. 2020 Dec 1;108(5):1339-1346. doi: 10.1016/j.ijrobp.2020.06.073. Epub 2020 Jul 4.

Abstract

PURPOSE

Methylation of the O-methylguanine methyltransferase (MGMT) gene promoter is associated with improved treatment response and survival in patients with glioblastoma (GB), but the necessary pathologic specimen can be nondiagnostic. In this study, we assessed whether radiomics features from pretreatment F-DOPA positron emission tomography (PET) imaging could be used to predict pathologic MGMT status.

METHODS AND MATERIALS

This study included 86 patients with newly diagnosed GB, split into 3 groups (training, validating, and predicting). We performed a radiomics analysis on F-DOPA PET images by extracting features from 2 tumor-based contours: a "Gold" contour of all abnormal uptake per expert nuclear medicine physician and a high-grade glioma (HGG) contour based on a tumor-to-normal hemispheric ratio >2.0, representing the most aggressive components. Feature selection was performed by comparing the weighted feature importance and filtering with bivariate analysis. Optimization of model parameters was explored using grid search with selected features. The stability of the model with increasing input features was also investigated for model robustness. The model predictions were then applied by comparing the overall survival probability of the patients with GB and unknown MGMT status versus those with known MGMT status.

RESULTS

A radiomics signature was constructed to predict MGMT methylation status. Using features extracted from HGG contour alone with a random forest model, we achieved 80% ± 10% accuracy for 95% confidence level in predicting MGMT status. The prediction accuracy was not improved with the addition of the Gold contour or with more input features. The model was applied to the patients with unknown MGMT methylation status. The prediction results are consistent with what is expected using overall survival as a surrogate.

CONCLUSIONS

This study suggests that 3 features from radiomics modeling of F-DOPA PET imaging can predict MGMT methylation status with reasonable accuracy. These results could provide valuable therapeutic guidance for patients in whom MGMT testing is inconclusive or nondiagnostic.

摘要

目的

O-甲基鸟嘌呤甲基转移酶(MGMT)基因启动子的甲基化与胶质母细胞瘤(GB)患者的治疗反应和生存改善相关,但必要的病理标本可能无法诊断。在这项研究中,我们评估了预处理 F-DOPA 正电子发射断层扫描(PET)成像的放射组学特征是否可用于预测病理 MGMT 状态。

方法和材料

本研究纳入了 86 例新诊断的 GB 患者,分为 3 组(训练组、验证组和预测组)。我们通过从 2 个肿瘤为基础的轮廓中提取特征来进行 F-DOPA PET 图像的放射组学分析:一个是由核医学专家确定的所有异常摄取的“金”轮廓,另一个是基于肿瘤与正常半球比>2.0 的高级别胶质瘤(HGG)轮廓,代表最具侵袭性的成分。通过比较加权特征重要性和双变量分析进行特征选择。使用选定特征的网格搜索探索模型参数的优化。还研究了模型随输入特征增加的稳定性,以验证模型的稳健性。然后通过比较未知 MGMT 状态和已知 MGMT 状态的患者与已知 MGMT 状态的患者的总生存概率来应用模型预测。

结果

构建了一个放射组学特征来预测 MGMT 甲基化状态。使用随机森林模型从 HGG 轮廓中提取特征,我们在 95%置信水平下达到了 80%±10%的预测 MGMT 状态的准确率。添加“金”轮廓或更多输入特征并不能提高预测准确性。该模型应用于未知 MGMT 甲基化状态的患者。预测结果与使用总生存作为替代指标的预期结果一致。

结论

这项研究表明,F-DOPA PET 成像的放射组学模型中的 3 个特征可以以合理的准确性预测 MGMT 甲基化状态。这些结果可为 MGMT 检测不确定或无法诊断的患者提供有价值的治疗指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a963/7680434/99b0f9cbd0fa/nihms-1622347-f0001.jpg

相似文献

引用本文的文献

4
Radiomics in glioma: emerging trends and challenges.神经胶质瘤中的放射组学:新趋势与挑战
Ann Clin Transl Neurol. 2025 Mar;12(3):460-477. doi: 10.1002/acn3.52306. Epub 2025 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验