Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale U1254, Université de Lorraine, 54000, Nancy, France.
Nancyclotep Imaging Platform, Université de Lorraine, 54000, Nancy, France.
Sci Rep. 2024 Feb 8;14(1):3256. doi: 10.1038/s41598-024-53693-x.
This study assesses the feasibility of using a sample-efficient model to investigate radiomics changes over time for predicting progression-free survival in rare diseases. Eighteen high-grade glioma patients underwent two L-3,4-dihydroxy-6-[F]-fluoro-phenylalanine positron emission tomography (PET) dynamic scans: the first during treatment and the second at temozolomide chemotherapy discontinuation. Radiomics features from static/dynamic parametric images, alongside conventional features, were extracted. After excluding highly correlated features, 16 different models were trained by combining various feature selection methods and time-to-event survival algorithms. Performance was assessed using cross-validation. To evaluate model robustness, an additional dataset including 35 patients with a single PET scan at therapy discontinuation was used. Model performance was compared with a strategy extracting informative features from the set of 35 patients and applying them to the 18 patients with 2 PET scans. Delta-absolute radiomics achieved the highest performance when the pipeline was directly applied to the 18-patient subset (support vector machine (SVM) and recursive feature elimination (RFE): C-index = 0.783 [0.744-0.818]). This result remained consistent when transferring informative features from 35 patients (SVM + RFE: C-index = 0.751 [0.716-0.784], p = 0.06). In addition, it significantly outperformed delta-absolute conventional (C-index = 0.584 [0.548-0.620], p < 0.001) and single-time-point radiomics features (C-index = 0.546 [0.512-0.580], p < 0.001), highlighting the considerable potential of delta radiomics in rare cancer cohorts.
本研究评估了使用样本高效模型来研究随时间变化的放射组学变化以预测罕见疾病无进展生存期的可行性。18 例高级别胶质瘤患者接受了两次 L-3、4-二羟基-6-[F]-氟苯丙氨酸正电子发射断层扫描(PET)动态扫描:第一次在治疗期间,第二次在替莫唑胺化疗停药时。从静态/动态参数图像中提取放射组学特征,以及常规特征。在排除高度相关的特征后,通过结合各种特征选择方法和时间事件生存算法,训练了 16 种不同的模型。使用交叉验证评估性能。为了评估模型的稳健性,使用包括 35 例在治疗停药时单次 PET 扫描的额外数据集。将从 35 例患者中提取信息特征并将其应用于 18 例有 2 次 PET 扫描的患者的策略与模型性能进行了比较。当直接将管道应用于 18 例患者子集时,Delta-absolute radiomics 实现了最高的性能(支持向量机(SVM)和递归特征消除(RFE):C 指数= 0.783 [0.744-0.818])。当从 35 例患者转移信息特征时,结果保持一致(SVM+RFE:C 指数= 0.751 [0.716-0.784],p=0.06)。此外,它显著优于 Delta-absolute 常规(C 指数= 0.584 [0.548-0.620],p<0.001)和单次时间点放射组学特征(C 指数= 0.546 [0.512-0.580],p<0.001),突出了 Delta 放射组学在罕见癌症队列中的巨大潜力。