Zhan Tianzhuo, Ma Shuaizhe, Jin Zhicheng, Takezawa Hiroki, Mesaki Kohei, Tomita Motohiro, Wu Yen-Ju, Xu Yibin, Matsukawa Takashi, Matsuki Takeo, Watanabe Takanobu
Waseda University, 3-4-1 O̅kubo, Shinjuku-ku, Tokyo 169-8555, Japan.
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
ACS Appl Mater Interfaces. 2020 Jul 29;12(30):34441-34450. doi: 10.1021/acsami.0c09253. Epub 2020 Jul 15.
In microthermoelectric generators (μTEGs), parasitic thermal resistance must be suppressed to increase the temperature difference across thermocouples for optimum power generation. A thermally conductive (TC) layer is typically used in μTEGs to guide the heat flow from the heat source to the hot junction of each thermocouple. In this study, we investigate the effect of the thermal boundary resistance (TBR) in metal/dielectric TC layers on the power generation of silicon nanowire (SiNW) μTEGs. We prepared various metal/adhesion/dielectric TC layers using different metal, adhesion, and dielectric layers and measured the thermal resistance using the frequency-domain thermoreflectance method. We found that the thermal resistance was significantly different, mainly due to the TBR of the metal/dielectric interfaces. Interface characterization highlights the significant role of the interfacial bonding strength and interdiffusion in TBR. We fabricated a prototype SiNW-μTEG with different TC layers for testing, finding that the power generation increased significantly when the thermal resistance of the TC layer was lowered. This study helps to understand the underlying physics of thermal transport at interfaces and provides a guideline for the design and fabrication of μTEGs to enhance power generation for effective energy harvesting.
在微型热电发电机(μTEG)中,必须抑制寄生热阻,以增大热电偶两端的温差,从而实现最佳发电效果。μTEG中通常使用导热(TC)层来引导热流从热源流向每个热电偶的热端。在本研究中,我们研究了金属/电介质TC层中的热边界电阻(TBR)对硅纳米线(SiNW)μTEG发电的影响。我们使用不同的金属、粘附层和电介质层制备了各种金属/粘附/电介质TC层,并使用频域热反射法测量了热阻。我们发现热阻存在显著差异,主要原因是金属/电介质界面的TBR。界面表征突出了界面结合强度和互扩散在TBR中的重要作用。我们制作了具有不同TC层的SiNW-μTEG原型进行测试,发现当TC层的热阻降低时,发电量显著增加。本研究有助于理解界面热传输的基本物理原理,并为μTEG的设计和制造提供指导,以增强发电效果,实现有效的能量收集。