Suppr超能文献

利用通用声学特征集刻画不同生态系统中的声音景观。

Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set.

机构信息

Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom;

Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17049-17055. doi: 10.1073/pnas.2004702117. Epub 2020 Jul 7.

Abstract

Natural habitats are being impacted by human pressures at an alarming rate. Monitoring these ecosystem-level changes often requires labor-intensive surveys that are unable to detect rapid or unanticipated environmental changes. Here we have developed a generalizable, data-driven solution to this challenge using eco-acoustic data. We exploited a convolutional neural network to embed soundscapes from a variety of ecosystems into a common acoustic space. In both supervised and unsupervised modes, this allowed us to accurately quantify variation in habitat quality across space and in biodiversity through time. On the scale of seconds, we learned a typical soundscape model that allowed automatic identification of anomalous sounds in playback experiments, providing a potential route for real-time automated detection of irregular environmental behavior including illegal logging and hunting. Our highly generalizable approach, and the common set of features, will enable scientists to unlock previously hidden insights from acoustic data and offers promise as a backbone technology for global collaborative autonomous ecosystem monitoring efforts.

摘要

自然栖息地正以惊人的速度受到人类压力的影响。监测这些生态系统层面的变化通常需要劳动密集型的调查,而这些调查无法检测到快速或意外的环境变化。在这里,我们使用生态声音数据为这一挑战开发了一个可推广的数据驱动解决方案。我们利用卷积神经网络将来自各种生态系统的声音景观嵌入到一个通用的声学空间中。无论是在有监督还是无监督的模式下,这都使我们能够准确地量化空间中栖息地质量的变化,以及随着时间的推移生物多样性的变化。在几秒钟的时间内,我们学习了一个典型的声音景观模型,该模型允许在回放实验中自动识别异常声音,为实时自动检测包括非法伐木和狩猎在内的不规则环境行为提供了一种潜在途径。我们高度可推广的方法和通用的特征集将使科学家能够从声学数据中解锁以前隐藏的见解,并有望成为全球协作自主生态系统监测工作的骨干技术。

相似文献

3
Spatial Patterns of Inshore Marine Soundscapes.近海海洋声景的空间模式。
Adv Exp Med Biol. 2016;875:697-703. doi: 10.1007/978-1-4939-2981-8_84.
7
Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping.利用声景测绘揭示声学环境中的空间变化。
PLoS One. 2016 Jul 28;11(7):e0159883. doi: 10.1371/journal.pone.0159883. eCollection 2016.

引用本文的文献

1
Computational Urban Ecology of New York City Rats.纽约市老鼠的计算城市生态学
bioRxiv. 2025 Jul 24:2025.07.21.665423. doi: 10.1101/2025.07.21.665423.
2
Tuning into nature: the sonic boost transforming tropical biodiversity research.融入自然:声波助力变革热带生物多样性研究
Philos Trans R Soc Lond B Biol Sci. 2025 Jun 12;380(1928):20240044. doi: 10.1098/rstb.2024.0044.
6

本文引用的文献

1
Accuracy of acoustic respiration rate monitoring in pediatric patients.小儿患者声学呼吸频率监测的准确性
Paediatr Anaesth. 2013 Dec;23(12):1166-73. doi: 10.1111/pan.12254. Epub 2013 Sep 3.
4
Assessing ecosystem health.评估生态系统健康。
Trends Ecol Evol. 1998 Oct 1;13(10):397-402. doi: 10.1016/s0169-5347(98)01449-9.
5
Measuring and monitoring illegal use of natural resources.衡量和监测非法使用自然资源。
Conserv Biol. 2010 Feb;24(1):89-100. doi: 10.1111/j.1523-1739.2009.01387.x. Epub 2009 Dec 9.
7
Rapid acoustic survey for biodiversity appraisal.用于生物多样性评估的快速声学调查
PLoS One. 2008;3(12):e4065. doi: 10.1371/journal.pone.0004065. Epub 2008 Dec 30.
8
Clustering by passing messages between data points.通过在数据点之间传递信息进行聚类。
Science. 2007 Feb 16;315(5814):972-6. doi: 10.1126/science.1136800. Epub 2007 Jan 11.
9
Invasive species are a leading cause of animal extinctions.入侵物种是导致动物灭绝的主要原因之一。
Trends Ecol Evol. 2005 Mar;20(3):110. doi: 10.1016/j.tree.2005.01.003. Epub 2005 Jan 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验