Suppr超能文献

使用基于鸟类感知判断训练的深度学习进行鸟鸣比较。

Bird song comparison using deep learning trained from avian perceptual judgments.

机构信息

Department of Psychology, Royal Holloway University of London, Egham, United Kingdom.

Department of Psychology, Queen Mary University of London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2024 Aug 7;20(8):e1012329. doi: 10.1371/journal.pcbi.1012329. eCollection 2024 Aug.

Abstract

Our understanding of bird song, a model system for animal communication and the neurobiology of learning, depends critically on making reliable, validated comparisons between the complex multidimensional syllables that are used in songs. However, most assessments of song similarity are based on human inspection of spectrograms, or computational methods developed from human intuitions. Using a novel automated operant conditioning system, we collected a large corpus of zebra finches' (Taeniopygia guttata) decisions about song syllable similarity. We use this dataset to compare and externally validate similarity algorithms in widely-used publicly available software (Raven, Sound Analysis Pro, Luscinia). Although these methods all perform better than chance, they do not closely emulate the avian assessments. We then introduce a novel deep learning method that can produce perceptual similarity judgements trained on such avian decisions. We find that this new method outperforms the established methods in accuracy and more closely approaches the avian assessments. Inconsistent (hence ambiguous) decisions are a common occurrence in animal behavioural data; we show that a modification of the deep learning training that accommodates these leads to the strongest performance. We argue this approach is the best way to validate methods to compare song similarity, that our dataset can be used to validate novel methods, and that the general approach can easily be extended to other species.

摘要

我们对鸟鸣的理解——动物交流和学习神经生物学的模式系统——严重依赖于对歌曲中使用的复杂多维音节进行可靠、有效的比较。然而,大多数对歌曲相似性的评估都是基于人类对声谱图的检查,或者是基于人类直觉开发的计算方法。我们使用一种新颖的自动化操作性条件反射系统,收集了大量斑马雀(Taeniopygia guttata)对歌曲音节相似性的决策数据。我们使用这个数据集来比较和外部验证广泛使用的公共可用软件(Raven、Sound Analysis Pro、Luscinia)中的相似性算法。虽然这些方法都比随机猜测要好,但它们并不能完全模拟鸟类的评估。然后,我们引入了一种新的深度学习方法,该方法可以根据鸟类的决策来进行感知相似性判断。我们发现,这种新方法在准确性方面优于现有的方法,并且更接近鸟类的评估。不一致(因此模糊)的决策在动物行为数据中很常见;我们表明,通过对深度学习训练进行修改以适应这些决策,可以获得最佳的性能。我们认为,这种方法是比较歌曲相似性的最佳方法,可以验证新方法,并且这种通用方法可以很容易地扩展到其他物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30c2/11333001/f7f14fd554f3/pcbi.1012329.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验