Suppr超能文献

失眠障碍中情绪面孔的分类

Categorization of Emotional Faces in Insomnia Disorder.

作者信息

Xu Song, Liu Xueping, Zhao Lun

机构信息

Department of Senile Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

出版信息

Front Neurol. 2020 Jun 19;11:569. doi: 10.3389/fneur.2020.00569. eCollection 2020.

Abstract

It has been proved that emotionally positive facial expressions are categorized much faster than emotionally negative facial expressions, the positive classification advantage (PCA). In the present study, we investigated the PCA in primary insomnia patients. In comparison with controls, insomnia patients categorized emotional faces more slowly but there was no significant reduction in accuracy. In normal controls, happy faces were categorized faster than sad faces (i.e., PCA), which disappeared in the inverted condition. Insomnia patients did not show evident PCA except for the overall delayed response for the inverted compared to the upright condition. These data suggest the dysfunction of categorization of emotional faces in insomnia patients.

摘要

事实证明,情绪积极的面部表情比情绪消极的面部表情分类速度要快得多,即存在积极分类优势(PCA)。在本研究中,我们调查了原发性失眠患者的PCA情况。与对照组相比,失眠患者对面部表情进行分类的速度较慢,但准确性没有显著降低。在正常对照组中,快乐的面部表情比悲伤的面部表情分类更快(即PCA),而在倒置条件下这种优势消失。除了与正立条件相比倒置时整体反应延迟外,失眠患者没有表现出明显的PCA。这些数据表明失眠患者在面部表情分类方面存在功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1c1/7317303/f26782f350e4/fneur-11-00569-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验