Suppr超能文献

地标和奖励在海马体中过度表现的不同机制。

Distinct Mechanisms of Over-Representation of Landmarks and Rewards in the Hippocampus.

机构信息

RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan; Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan; RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.

RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.

出版信息

Cell Rep. 2020 Jul 7;32(1):107864. doi: 10.1016/j.celrep.2020.107864.

Abstract

In the hippocampus, locations associated with salient features are represented by a disproportionately large number of neurons, but the cellular and molecular mechanisms underlying this over-representation remain elusive. Using longitudinal calcium imaging in mice learning to navigate in virtual reality, we find that the over-representation of reward and landmark locations are mediated by persistent and separable subsets of neurons, with distinct time courses of emergence and differing underlying molecular mechanisms. Strikingly, we find that in mice lacking Shank2, an autism spectrum disorder (ASD)-linked gene encoding an excitatory postsynaptic scaffold protein, the learning-induced over-representation of landmarks was absent whereas the over-representation of rewards was substantially increased, as was goal-directed behavior. These findings demonstrate that multiple hippocampal coding processes for unique types of salient features are distinguished by a Shank2-dependent mechanism and suggest that abnormally distorted hippocampal salience mapping may underlie cognitive and behavioral abnormalities in a subset of ASDs.

摘要

在海马体中,与显著特征相关的位置由大量不成比例的神经元来表示,但这种过度表示的细胞和分子机制仍然难以捉摸。通过对在虚拟现实中学习导航的小鼠进行纵向钙成像研究,我们发现奖励和地标位置的过度表示是由持久和可分离的神经元亚群介导的,其出现的时间过程不同,潜在的分子机制也不同。引人注目的是,我们发现,在缺乏 Shank2 的小鼠中,Shank2 是一种与自闭症谱系障碍(ASD)相关的基因,编码一种兴奋性突触后支架蛋白,学习诱导的地标过度表示缺失,而奖励的过度表示则显著增加,目标导向行为也是如此。这些发现表明,多种海马体对独特类型显著特征的编码过程是由 Shank2 依赖的机制区分的,并表明异常扭曲的海马体显著映射可能是某些 ASD 认知和行为异常的基础。

相似文献

1
Distinct Mechanisms of Over-Representation of Landmarks and Rewards in the Hippocampus.
Cell Rep. 2020 Jul 7;32(1):107864. doi: 10.1016/j.celrep.2020.107864.
2
[Imaging brain activity in virtual reality: abnormal hippocampal cognitive maps in autism model mice].
Nihon Yakurigaku Zasshi. 2023;158(2):139-143. doi: 10.1254/fpj.22115.
3
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
eNeuro. 2017 May 2;4(3). doi: 10.1523/ENEURO.0369-16.2017. eCollection 2017 May-Jun.
4
Representation of visual landmarks in retrosplenial cortex.
Elife. 2020 Mar 10;9:e51458. doi: 10.7554/eLife.51458.
6
Multiple coordinated cellular dynamics mediate CA1 map plasticity.
Hippocampus. 2021 Mar;31(3):235-243. doi: 10.1002/hipo.23300. Epub 2021 Jan 16.
7
NEXMIF/KIDLIA Knock-out Mouse Demonstrates Autism-Like Behaviors, Memory Deficits, and Impairments in Synapse Formation and Function.
J Neurosci. 2020 Jan 2;40(1):237-254. doi: 10.1523/JNEUROSCI.0222-19.2019. Epub 2019 Nov 8.
8
A Dedicated Population for Reward Coding in the Hippocampus.
Neuron. 2018 Jul 11;99(1):179-193.e7. doi: 10.1016/j.neuron.2018.06.008. Epub 2018 Jun 28.
9
Autistic traits in neurotypical individuals are associated with increased landmark use during navigation.
Psych J. 2019 Mar;8(1):137-146. doi: 10.1002/pchj.230. Epub 2018 Oct 8.
10
Cell-Type-Specific Deletion in Mice Leads to Differential Synaptic and Behavioral Phenotypes.
J Neurosci. 2018 Apr 25;38(17):4076-4092. doi: 10.1523/JNEUROSCI.2684-17.2018. Epub 2018 Mar 23.

引用本文的文献

1
Graded remapping of prefrontal representations preserves a cumulative record of distinct events within an environment.
iScience. 2025 Jun 25;28(8):113009. doi: 10.1016/j.isci.2025.113009. eCollection 2025 Aug 15.
2
The neural computational and dynamical mechanisms of reward-modulated spatial coding in hippocampal place cells.
Cogn Neurodyn. 2025 Dec;19(1):99. doi: 10.1007/s11571-025-10282-6. Epub 2025 Jun 23.
3
A flexible hippocampal population code for experience relative to reward.
Nat Neurosci. 2025 Jun 11. doi: 10.1038/s41593-025-01985-4.
4
Formation of an expanding memory representation in the hippocampus.
Nat Neurosci. 2025 Jun 4. doi: 10.1038/s41593-025-01986-3.
6
Diminished Social Memory and Hippocampal Correlates of Social Interactions in Chronic Social Defeat Stress Susceptibility.
Biol Psychiatry Glob Open Sci. 2025 Jan 30;5(3):100455. doi: 10.1016/j.bpsgos.2025.100455. eCollection 2025 May.
7
Impaired spatial coding of the hippocampus in a dentate gyrus hypoplasia mouse model.
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2416214122. doi: 10.1073/pnas.2416214122. Epub 2025 Jan 30.
10
Continuous Bump Attractor Networks Require Explicit Error Coding for Gain Recalibration.
Res Sq. 2024 Apr 15:rs.3.rs-4209280. doi: 10.21203/rs.3.rs-4209280/v1.

本文引用的文献

1
Dynamic control of hippocampal spatial coding resolution by local visual cues.
Elife. 2019 Mar 1;8:e44487. doi: 10.7554/eLife.44487.
2
CaImAn an open source tool for scalable calcium imaging data analysis.
Elife. 2019 Jan 17;8:e38173. doi: 10.7554/eLife.38173.
3
Egocentric coding of external items in the lateral entorhinal cortex.
Science. 2018 Nov 23;362(6417):945-949. doi: 10.1126/science.aau4940.
4
A Dedicated Population for Reward Coding in the Hippocampus.
Neuron. 2018 Jul 11;99(1):179-193.e7. doi: 10.1016/j.neuron.2018.06.008. Epub 2018 Jun 28.
5
Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism.
Front Mol Neurosci. 2018 Jun 19;11:107. doi: 10.3389/fnmol.2018.00107. eCollection 2018.
7
Tracking the Same Neurons across Multiple Days in Ca Imaging Data.
Cell Rep. 2017 Oct 24;21(4):1102-1115. doi: 10.1016/j.celrep.2017.10.013.
8
Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers.
JCI Insight. 2017 Oct 19;2(20):92052. doi: 10.1172/jci.insight.92052.
9
Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion.
Nat Neurosci. 2017 Nov;20(11):1612-1623. doi: 10.1038/nn.4634. Epub 2017 Sep 4.
10
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
eNeuro. 2017 May 2;4(3). doi: 10.1523/ENEURO.0369-16.2017. eCollection 2017 May-Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验