Suppr超能文献

齿状回发育不全小鼠模型中海马体的空间编码受损。

Impaired spatial coding of the hippocampus in a dentate gyrus hypoplasia mouse model.

作者信息

Chen Xiaojing, Cheng Ning, Wang Cheng, Knierim James J

机构信息

Brain Research Centre, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218.

出版信息

Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2416214122. doi: 10.1073/pnas.2416214122. Epub 2025 Jan 30.

Abstract

The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks. Here, we investigated the physiological consequences of granule cell loss in these mice by conducting in vivo calcium imaging from CA1 principal cells during behavior. The spatial selectivity of these cells was preserved without the DG. On a linear track, place fields in mutant mice were more likely to be near track terminals and to encode the distance from the start point in each running direction. In an open box, CA1 cells in mutant mice exhibited reductions in the percentage of place cells, in spatial information, and in place field stability. The reduction in place field stability across repeated exposures to the same environment resulted in a reduction in the differential representations of two different contexts in mutant mice compared to wild-type mice. These results suggest that DG helps to stabilize CA1 spatial representations, especially in 2-D environments, and that the lack of stability across similar environments may play a key role in the deficits of animals with DG dysfunction in discriminating different environments.

摘要

海马齿状回(DG)被认为可使来自内嗅皮质的输入正交化(模式分离),并将此信息传递至CA3区域。反过来,CA3中的吸引子动力学在将其输出发送至CA1之前执行模式完成或纠错操作。在DG先天性发育不全的小鼠模型中,(Wls)基因缺陷,特别是在表达靶向神经元祖细胞的 的细胞中,导致齿状颗粒细胞几乎完全缺失,并且在空间任务中的表现略有受损。在这里,我们通过在行为期间对CA1主细胞进行体内钙成像,研究了这些小鼠中颗粒细胞丢失的生理后果。没有DG时,这些细胞的空间选择性得以保留。在直线轨道上,突变小鼠的位置场更有可能靠近轨道末端,并编码每个奔跑方向上与起点的距离。在开放箱中,突变小鼠的CA1细胞在位置细胞百分比、空间信息和位置场稳定性方面均表现出降低。与野生型小鼠相比,在重复暴露于相同环境时位置场稳定性的降低导致突变小鼠中两种不同环境的差异表征减少。这些结果表明,DG有助于稳定CA1空间表征,尤其是在二维环境中,并且在相似环境中缺乏稳定性可能在DG功能障碍的动物区分不同环境的缺陷中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d891/11804539/d5f9e31af9b7/pnas.2416214122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验