Suppr超能文献

人工等离子体膜衍生纳米囊泡的开发,适用于药物包裹。

Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation.

机构信息

Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.

Department of Drug Science, University of Pavia, 27100 Pavia, Italy.

出版信息

Cells. 2020 Jul 6;9(7):1626. doi: 10.3390/cells9071626.

Abstract

Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.

摘要

细胞外囊泡 (EVs) 在许多病理情况下被认为是很有前途的纳米粒子治疗学工具。治疗性纳米粒子在临床应用的不断增加,推动了与人工 EVs 设计相关的新研究领域的发展。为此,已经描述了不同的方法来开发仿生生物功能的纳米囊泡。在本文中,我们提出了一种简化的方法来生成由质膜衍生的纳米囊泡,在其自发组装过程中可以有效地封装不同的药物。通过可调电阻脉冲感应 (TRPS) 技术、透射电子显微镜和流式细胞术进行物理和分子表征后,作为原理的证明,我们将异喹啉生物碱盐酸小檗碱和化疗药物替莫唑胺或 Givinostat 加载到仿生 EVs 中。我们证明了这些纳米粒子在药物封装和细胞递送方面的完全功能,特别是在直接细胞培养给药时显示出类似的抗癌药物细胞毒性作用。总之,我们已经证明了可以轻松地生成具有特定治疗性有效负载修饰的可扩展纳米囊泡,这些囊泡在不同的药物递送环境中具有应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a05/7408059/b4ff5ae7d207/cells-09-01626-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验