Suppr超能文献

使用卷积神经网络推断群体健康的死因

Infer Cause of Death for Population Health Using Convolutional Neural Network.

作者信息

Wu Hang, Wang May D

机构信息

Dept. of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332.

出版信息

ACM BCB. 2017 Aug;2017:526-535. doi: 10.1145/3107411.3107447.

Abstract

In biomedical data analysis, inferring the cause of death is a challenging and important task, which is useful for both public health reporting purposes, as well as improving patients' quality of care by identifying severer conditions. Causal inference, however, is notoriously difficult. Traditional causal inference mainly relies on analyzing data collected from experiment of specific design, which is expensive, and limited to a certain disease cohort, making the approach less generalizable. In our paper, we adopt a novel data-driven perspective to analyze and improve the death reporting process, to assist physicians identify the single underlying cause of death. To achieve this, we build state-of-the-art deep learning models, convolution neural network (CNN), and achieve around 75% accuracy in predicting the single underlying cause of death from a list of relevant medical conditions. We also provide interpretations for the black-box neural network models, so that death reporting physicians can apply the model with better understanding of the model.

摘要

在生物医学数据分析中,推断死因是一项具有挑战性且重要的任务,这对于公共卫生报告目的以及通过识别更严重的病情来改善患者的护理质量都很有用。然而,因果推断 notoriously difficult。传统的因果推断主要依赖于分析从特定设计的实验中收集的数据,这成本高昂且仅限于特定疾病队列,使得该方法的通用性较差。在我们的论文中,我们采用了一种新颖的数据驱动视角来分析和改进死亡报告流程,以帮助医生识别单一潜在死因。为实现这一目标,我们构建了最先进的深度学习模型——卷积神经网络(CNN),并在从相关医疗状况列表中预测单一潜在死因方面达到了约75%的准确率。我们还为黑箱神经网络模型提供了解释,以便死亡报告医生能够在更好地理解模型的情况下应用该模型。

“notoriously difficult”直译为“臭名昭著地困难”,这里意译为“极其困难”更符合语境。

相似文献

1
Infer Cause of Death for Population Health Using Convolutional Neural Network.
ACM BCB. 2017 Aug;2017:526-535. doi: 10.1145/3107411.3107447.
2
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
Comput Methods Programs Biomed. 2017 Mar;140:283-293. doi: 10.1016/j.cmpb.2016.12.019. Epub 2017 Jan 6.
3
A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips.
Neural Netw. 2019 Oct;118:208-219. doi: 10.1016/j.neunet.2019.06.010. Epub 2019 Jul 2.
4
Advancing Underlying Cause of Death Inference Through Wide and Deep Model.
China CDC Wkly. 2024 May 24;6(21):487-492. doi: 10.46234/ccdcw2024.094.
5
Accurate brain tumor detection using deep convolutional neural network.
Comput Struct Biotechnol J. 2022 Aug 27;20:4733-4745. doi: 10.1016/j.csbj.2022.08.039. eCollection 2022.
6
CEFEs: A CNN Explainable Framework for ECG Signals.
Artif Intell Med. 2021 May;115:102059. doi: 10.1016/j.artmed.2021.102059. Epub 2021 Mar 26.
7
NSCGCN: A novel deep GCN model to diagnosis COVID-19.
Comput Biol Med. 2022 Nov;150:106151. doi: 10.1016/j.compbiomed.2022.106151. Epub 2022 Sep 30.
9
An Automated Method of Causal Inference of the Underlying Cause of Death of Citizens.
Life (Basel). 2022 Jul 28;12(8):1134. doi: 10.3390/life12081134.

引用本文的文献

1
Proposing Causal Sequence of Death by Neural Machine Translation in Public Health Informatics.
IEEE J Biomed Health Inform. 2022 Apr;26(4):1422-1431. doi: 10.1109/JBHI.2022.3163013. Epub 2022 Apr 14.

本文引用的文献

1
Causes of death in the United States, 1999 to 2014.
IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017. doi: 10.1109/bhi.2017.7897234. Epub 2017 Apr 13.
2
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. 2017 Feb 2;542(7639):115-118. doi: 10.1038/nature21056. Epub 2017 Jan 25.
3
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
4
3D convolutional neural networks for human action recognition.
IEEE Trans Pattern Anal Mach Intell. 2013 Jan;35(1):221-31. doi: 10.1109/TPAMI.2012.59.
5
A review of causal inference for biomedical informatics.
J Biomed Inform. 2011 Dec;44(6):1102-12. doi: 10.1016/j.jbi.2011.07.001. Epub 2011 Jul 14.
6
Diabetes mellitus, fasting glucose, and risk of cause-specific death.
N Engl J Med. 2011 Mar 3;364(9):829-841. doi: 10.1056/NEJMoa1008862.
7
Matching methods for causal inference: A review and a look forward.
Stat Sci. 2010 Feb 1;25(1):1-21. doi: 10.1214/09-STS313.
10
Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy.
J Thromb Haemost. 2007 Mar;5(3):632-4. doi: 10.1111/j.1538-7836.2007.02374.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验