Suppr超能文献

生物医学信息学因果推断研究综述。

A review of causal inference for biomedical informatics.

机构信息

Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States.

出版信息

J Biomed Inform. 2011 Dec;44(6):1102-12. doi: 10.1016/j.jbi.2011.07.001. Epub 2011 Jul 14.

Abstract

Causality is an important concept throughout the health sciences and is particularly vital for informatics work such as finding adverse drug events or risk factors for disease using electronic health records. While philosophers and scientists working for centuries on formalizing what makes something a cause have not reached a consensus, new methods for inference show that we can make progress in this area in many practical cases. This article reviews core concepts in understanding and identifying causality and then reviews current computational methods for inference and explanation, focusing on inference from large-scale observational data. While the problem is not fully solved, we show that graphical models and Granger causality provide useful frameworks for inference and that a more recent approach based on temporal logic addresses some of the limitations of these methods.

摘要

因果关系是整个健康科学领域的一个重要概念,对于使用电子健康记录查找药物不良反应或疾病风险因素等信息学工作尤为重要。虽然哲学家和科学家们几个世纪以来一直在努力形式化什么是原因,但新的推理方法表明,在许多实际情况下,我们可以在这个领域取得进展。本文回顾了理解和识别因果关系的核心概念,然后回顾了当前用于推理和解释的计算方法,重点是从大规模观察数据中进行推理。虽然这个问题还没有完全解决,但我们表明图形模型和格兰杰因果关系为推理提供了有用的框架,并且基于时间逻辑的最新方法解决了这些方法的一些局限性。

相似文献

1
A review of causal inference for biomedical informatics.
J Biomed Inform. 2011 Dec;44(6):1102-12. doi: 10.1016/j.jbi.2011.07.001. Epub 2011 Jul 14.
2
Causation and causal inference in epidemiology.
Am J Public Health. 2005;95 Suppl 1:S144-50. doi: 10.2105/AJPH.2004.059204.
3
A supervised adverse drug reaction signalling framework imitating Bradford Hill's causality considerations.
J Biomed Inform. 2015 Aug;56:356-68. doi: 10.1016/j.jbi.2015.06.011. Epub 2015 Jun 24.
4
Quantifying Evidence for-and against-Granger Causality with Bayes Factors.
Multivariate Behav Res. 2024 Nov-Dec;59(6):1148-1158. doi: 10.1080/00273171.2023.2214890. Epub 2023 Jun 9.
5
Granger causality vs. dynamic Bayesian network inference: a comparative study.
BMC Bioinformatics. 2009 Apr 24;10:122. doi: 10.1186/1471-2105-10-122.
6
A novel method for predicting the progression rate of ALS disease based on automatic generation of probabilistic causal chains.
Artif Intell Med. 2020 Jul;107:101879. doi: 10.1016/j.artmed.2020.101879. Epub 2020 May 22.
7
A Narrative Review of Methods for Causal Inference and Associated Educational Resources.
Qual Manag Health Care. 2020 Oct/Dec;29(4):260-269. doi: 10.1097/QMH.0000000000000276.
8
Modernizing the Bradford Hill criteria for assessing causal relationships in observational data.
Crit Rev Toxicol. 2018 Sep;48(8):682-712. doi: 10.1080/10408444.2018.1518404. Epub 2018 Nov 15.
9
Precision psychiatry needs causal inference.
Acta Neuropsychiatr. 2024 Oct 17;37:e32. doi: 10.1017/neu.2024.29.
10
[Causal inference in medicine--a historical view in epidemiology].
Nihon Eiseigaku Zasshi. 1996 Jul;51(2):558-68. doi: 10.1265/jjh.51.558.

引用本文的文献

1
Machine learning driven biomarker selection for medical diagnosis.
PLoS One. 2025 Jun 11;20(6):e0322620. doi: 10.1371/journal.pone.0322620. eCollection 2025.
3
Opportunities for incorporating intersectionality into biomedical informatics.
J Biomed Inform. 2024 Jun;154:104653. doi: 10.1016/j.jbi.2024.104653. Epub 2024 May 10.
5
Evaluating Large Language Models in Extracting Cognitive Exam Dates and Scores.
medRxiv. 2024 Feb 13:2023.07.10.23292373. doi: 10.1101/2023.07.10.23292373.
6
A Comprehensive Framework for Measuring the Immediate Impact of TV Advertisements: TV-Impact.
Entropy (Basel). 2024 Jan 25;26(2):109. doi: 10.3390/e26020109.
7
Automated detection of causal relationships among diseases and imaging findings in textual radiology reports.
J Am Med Inform Assoc. 2023 Sep 25;30(10):1701-1706. doi: 10.1093/jamia/ocad119.
9
Big Data to Knowledge: Application of Machine Learning to Predictive Modeling of Therapeutic Response in Cancer.
Curr Genomics. 2021 Dec 16;22(4):244-266. doi: 10.2174/1389202921999201224110101.
10
Causal Datasheet for Datasets: An Evaluation Guide for Real-World Data Analysis and Data Collection Design Using Bayesian Networks.
Front Artif Intell. 2021 Apr 14;4:612551. doi: 10.3389/frai.2021.612551. eCollection 2021.

本文引用的文献

1
The evolution of population science: advent of the mega cohort.
JAMA. 2010 Nov 24;304(20):2288-9. doi: 10.1001/jama.2010.1691.
2
Redundant causation from a sufficient cause perspective.
Epidemiol Perspect Innov. 2010 Aug 2;7:5. doi: 10.1186/1742-5573-7-5.
3
Prediction modeling using EHR data: challenges, strategies, and a comparison of machine learning approaches.
Med Care. 2010 Jun;48(6 Suppl):S106-13. doi: 10.1097/MLR.0b013e3181de9e17.
4
The limitations of randomized controlled trials in predicting effectiveness.
J Eval Clin Pract. 2010 Apr;16(2):260-6. doi: 10.1111/j.1365-2753.2010.01382.x.
5
Variational causal claims in epidemiology.
Perspect Biol Med. 2009 Autumn;52(4):540-54. doi: 10.1353/pbm.0.0118.
8
The role of causal criteria in causal inferences: Bradford Hill's "aspects of association".
Epidemiol Perspect Innov. 2009 Jun 17;6:2. doi: 10.1186/1742-5573-6-2.
9
Granger causality vs. dynamic Bayesian network inference: a comparative study.
BMC Bioinformatics. 2009 Apr 24;10:122. doi: 10.1186/1471-2105-10-122.
10
How to assess the external validity of therapeutic trials: a conceptual approach.
Int J Epidemiol. 2010 Feb;39(1):89-94. doi: 10.1093/ije/dyp174. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验