Milshteyn Eugene, Guryev Georgy, Torrado-Carvajal Angel, Adalsteinsson Elfar, White Jacob K, Wald Lawrence L, Guerin Bastien
Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
Harvard Medical School, Boston, MA, USA.
Magn Reson Med. 2021 Jan;85(1):429-443. doi: 10.1002/mrm.28398. Epub 2020 Jul 8.
We propose a fast, patient-specific workflow for on-line specific absorption rate (SAR) supervision. An individualized electromagnetic model is created while the subject is on the table, followed by rapid SAR estimates for that individual. Our goal is an improved correspondence between the patient and model, reducing reliance on general anatomical body models.
A 3D fat-water 3T acquisition (2 minutes) is automatically segmented using a computer vision algorithm (1 minute) into what we found to be the most important electromagnetic tissue classes: air, bone, fat, and soft tissues. We then compute the individual's EM field exposure and global and local SAR matrices using a fast electromagnetic integral equation solver. We assess the approach in 10 volunteers and compare to the SAR seen in a standard generic body model (Duke).
The on-the-table workflow averaged 7'44″. Simulation of the simplified Duke models confirmed that only air, bone, fat, and soft tissue classes are needed to estimate global and local SAR with an error of 6.7% and 2.7%, respectively, compared to the full model. In contrast, our volunteers showed a 16.0% and 20.3% population variability in global and local SAR, respectively, which was mostly underestimated by the Duke model.
Timely construction and deployment of a patient-specific model is computationally feasible. The benefit of resolving the population heterogeneity compared favorably to the modest modeling error incurred. This suggests that individualized SAR estimates can improve electromagnetic safety in MRI and possibly reduce conservative safety margins that account for patient-model mismatch, especially in non-standard patients.
我们提出一种快速、针对患者的在线比吸收率(SAR)监测工作流程。在受试者躺在检查台上时创建个体化电磁模型,随后对该个体进行快速SAR估计。我们的目标是改善患者与模型之间的对应关系,减少对一般解剖人体模型的依赖。
使用计算机视觉算法(约1分钟)自动分割一个3D脂肪-水3T采集数据(约2分钟),将其分割为我们发现的最重要的电磁组织类别:空气、骨骼、脂肪和软组织。然后,我们使用快速电磁积分方程求解器计算个体的电磁场暴露以及全局和局部SAR矩阵。我们在10名志愿者中评估了该方法,并与标准通用人体模型(杜克模型)中的SAR进行比较。
台上工作流程平均用时7分44秒。简化杜克模型的模拟证实,仅需空气、骨骼、脂肪和软组织类别即可估计全局和局部SAR,与完整模型相比,误差分别为6.7%和2.7%。相比之下,我们的志愿者在全局和局部SAR方面分别表现出16.0%和20.3%的个体差异,而杜克模型大多低估了这些差异。
及时构建和部署针对患者的模型在计算上是可行的。解决个体差异带来的益处远大于所产生的适度建模误差。这表明个体化SAR估计可以提高MRI中的电磁安全性,并可能减少因患者-模型不匹配而设置的保守安全裕度,尤其是在非标准患者中。