Suppr超能文献

密度泛函理论在预测致突变性方面的应用:一个视角。

Density Functional Theory in the Prediction of Mutagenicity: A Perspective.

机构信息

Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.

出版信息

Chem Res Toxicol. 2021 Feb 15;34(2):179-188. doi: 10.1021/acs.chemrestox.0c00113. Epub 2020 Aug 7.

Abstract

As a field, computational toxicology is concerned with using models to predict and understand the origins of toxicity. It is fast, relatively inexpensive, and avoids the ethical conundrum of using animals in scientific experimentation. In this perspective, we discuss the importance of computational models in toxicology, with a specific focus on the different model types that can be used in predictive toxicological approaches toward mutagenicity (SARs and QSARs). We then focus on how quantum chemical methods, such as density functional theory (DFT), have previously been used in the prediction of mutagenicity. It is then discussed how DFT allows for the development of new chemical descriptors that focus on capturing the steric and energetic effects that influence toxicological reactions. We hope to demonstrate the role that DFT plays in understanding the fundamental, intrinsic chemistry of toxicological reactions in predictive toxicology.

摘要

作为一个领域,计算毒理学关注使用模型来预测和理解毒性的起源。它快速、相对便宜,并且避免了在科学实验中使用动物的伦理难题。在这个观点中,我们讨论了计算模型在毒理学中的重要性,特别关注可用于预测毒理学方法中的不同模型类型,如致突变性(SARs 和 QSARs)。然后,我们专注于密度泛函理论 (DFT) 等量子化学方法如何以前用于预测致突变性。然后讨论了 DFT 如何允许开发新的化学描述符,这些描述符专注于捕捉影响毒理学反应的空间和能量效应。我们希望展示 DFT 在理解预测毒理学中毒理学反应的基本内在化学中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ea/7887799/32dff1258393/tx0c00113_0003.jpg

相似文献

1
Density Functional Theory in the Prediction of Mutagenicity: A Perspective.
Chem Res Toxicol. 2021 Feb 15;34(2):179-188. doi: 10.1021/acs.chemrestox.0c00113. Epub 2020 Aug 7.
2
Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results.
Methods Mol Biol. 2018;1800:573-583. doi: 10.1007/978-1-4939-7899-1_27.
3
Electron-correlation based externally predictive QSARs for mutagenicity of nitrated-PAHs in Salmonella typhimurium TA100.
Ecotoxicol Environ Saf. 2014 Mar;101:42-50. doi: 10.1016/j.ecoenv.2013.11.020. Epub 2014 Jan 9.
4
Comprehension of drug toxicity: software and databases.
Comput Biol Med. 2014 Feb;45:20-5. doi: 10.1016/j.compbiomed.2013.11.013. Epub 2013 Nov 27.
5
In Silico Approaches in Predictive Genetic Toxicology.
Methods Mol Biol. 2019;2031:351-373. doi: 10.1007/978-1-4939-9646-9_20.
6
Does electron-correlation has any role in the quantitative structure-activity relationships?
J Mol Graph Model. 2013 May;42:7-16. doi: 10.1016/j.jmgm.2013.02.005. Epub 2013 Feb 20.
7
Density Functional Theory Transition-State Modeling for the Prediction of Ames Mutagenicity in 1,4 Michael Acceptors.
J Chem Inf Model. 2019 Dec 23;59(12):5099-5103. doi: 10.1021/acs.jcim.9b00966. Epub 2019 Dec 10.
8
In silico prediction of drug toxicity.
J Comput Aided Mol Des. 2003 Feb-Apr;17(2-4):119-27. doi: 10.1023/a:1025361621494.
9
Quantum mechanical quantitative structure activity relationships to avoid mutagenicity in dental monomers.
J Biomater Sci Polym Ed. 2001;12(1):89-105. doi: 10.1163/156856201744470.
10
Predictive computational toxicology to support drug safety assessment.
Methods Mol Biol. 2013;930:341-54. doi: 10.1007/978-1-62703-059-5_15.

本文引用的文献

1
Density Functional Theory Transition-State Modeling for the Prediction of Ames Mutagenicity in 1,4 Michael Acceptors.
J Chem Inf Model. 2019 Dec 23;59(12):5099-5103. doi: 10.1021/acs.jcim.9b00966. Epub 2019 Dec 10.
2
Mechanistic Reactivity Descriptors for the Prediction of Ames Mutagenicity of Primary Aromatic Amines.
J Chem Inf Model. 2019 Feb 25;59(2):668-672. doi: 10.1021/acs.jcim.8b00758. Epub 2019 Feb 13.
4
Using Transition State Modeling To Predict Mutagenicity for Michael Acceptors.
J Chem Inf Model. 2018 Jun 25;58(6):1266-1271. doi: 10.1021/acs.jcim.8b00130. Epub 2018 Jun 11.
5
Performance of In Silico Models for Mutagenicity Prediction of Food Contact Materials.
Toxicol Sci. 2018 Jun 1;163(2):632-638. doi: 10.1093/toxsci/kfy057.
6
DNA mutation motifs in the genes associated with inherited diseases.
PLoS One. 2017 Aug 2;12(8):e0182377. doi: 10.1371/journal.pone.0182377. eCollection 2017.
7
Adverse outcome pathways: a concise introduction for toxicologists.
Arch Toxicol. 2017 Nov;91(11):3697-3707. doi: 10.1007/s00204-017-2020-z. Epub 2017 Jun 28.
9
A History of the Molecular Initiating Event.
Chem Res Toxicol. 2016 Dec 19;29(12):2060-2070. doi: 10.1021/acs.chemrestox.6b00341. Epub 2016 Nov 30.
10
Animal testing is still the best way to find new treatments for patients.
Eur J Intern Med. 2017 Apr;39:32-35. doi: 10.1016/j.ejim.2016.11.013. Epub 2016 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验