Suppr超能文献

基于高结构可区分性的深度主动学习在分子突变预测中的应用。

Deep active learning with high structural discriminability for molecular mutagenicity prediction.

机构信息

Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, China.

Academy of Military Medical Sciences, Beijing, China.

出版信息

Commun Biol. 2024 Aug 31;7(1):1071. doi: 10.1038/s42003-024-06758-6.

Abstract

The assessment of mutagenicity is essential in drug discovery, as it may lead to cancer and germ cells damage. Although in silico methods have been proposed for mutagenicity prediction, their performance is hindered by the scarcity of labeled molecules. However, experimental mutagenicity testing can be time-consuming and costly. One solution to reduce the annotation cost is active learning, where the algorithm actively selects the most valuable molecules from a vast chemical space and presents them to the oracle (e.g., a human expert) for annotation, thereby rapidly improving the model's predictive performance with a smaller annotation cost. In this paper, we propose muTOX-AL, a deep active learning framework, which can actively explore the chemical space and identify the most valuable molecules, resulting in competitive performance with a small number of labeled samples. The experimental results show that, compared to the random sampling strategy, muTOX-AL can reduce the number of training molecules by about 57%. Additionally, muTOX-AL exhibits outstanding molecular structural discriminability, allowing it to pick molecules with high structural similarity but opposite properties.

摘要

致突变性评估在药物发现中至关重要,因为它可能导致癌症和生殖细胞损伤。尽管已经提出了用于致突变性预测的计算方法,但由于标记分子的稀缺性,它们的性能受到限制。然而,实验性致突变性测试可能既耗时又昂贵。减少注释成本的一种解决方案是主动学习,其中算法从广阔的化学空间中主动选择最有价值的分子,并将其呈现给(例如,人类专家)进行注释,从而以较小的注释成本快速提高模型的预测性能。在本文中,我们提出了 muTOX-AL,这是一个深度主动学习框架,它可以主动探索化学空间并识别最有价值的分子,从而以少量标记样本实现有竞争力的性能。实验结果表明,与随机抽样策略相比,muTOX-AL 可以将训练分子的数量减少约 57%。此外,muTOX-AL 表现出出色的分子结构辨别能力,能够挑选具有高结构相似性但性质相反的分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6619/11366013/e16c7a8a0f3d/42003_2024_6758_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验