Université de Sfax, Institut Supérieur du Sport et de l'Education Physique de Sfax. Laboratoire de recherche Education, Motricité, Sport et Santé, EMSS-LR19JS01, Sfax, Tunisie.
Université de Toulon, Laboratoire IAPS, UR n°201723207F, Toulon, France.
J Spinal Cord Med. 2022 Mar;45(2):262-269. doi: 10.1080/10790268.2020.1778352. Epub 2020 Jul 9.
This is a preliminary study of movement finalities prediction in manual wheelchairs (MWCs) from electromyography (EMG) data. MWC users suffer from musculoskeletal disorders and need assistance while moving. The purpose of this work is to predict the direction and speed of movement in MWCs from EMG data prior to movement initiation. This prediction could be used by MWC to assist users in their displacement by doing a smart electrical assistance based on displacement prediction. Experimental study. Trained Subject LAMIH Laboratory. Eight healthy subjects trained to move in manual wheelchairs. Subjects initiated the movement in three directions (front, right and left) and with two speeds (maximum speed and spontaneous speed) from two hand positions (on the thighs or on the handrim). A total of 96 movements was studied. Activation of 14 muscles was recorded bilaterally at the deltoid anterior, deltoid posterior, biceps brachii, pectoralis major, rectus abdominis, obliquus externus and erector spinae. Prior amplitude, prior time and anticipatory postural adjustments were measured. A hierarchical multi-class classification using logistic regression was used to create a cascade of prediction models. We performed a stepwise (forward-backward) selection of variables using the Bayesian information criterion. Percentages of well-classified movements have been measured through the means of a cross-validation. Prediction is possible using the EMG parameters and allows to discriminate the direction / speed combination with 95% correct classification on the 6 possible classes (3 directions * 2 speeds). Action planning in the static position showed significant adaptability to the forthcoming parameters displacement. The percentages of prediction presented in this work make it possible to envision an intuitive assistance to the initiation of the MWC displacement adapted to the user's intentions.
这是一项关于从肌电图(EMG)数据预测手动轮椅(MWC)运动终点的初步研究。MWC 用户患有肌肉骨骼疾病,在移动时需要帮助。这项工作的目的是在运动开始前从 EMG 数据预测 MWC 的运动方向和速度。MWC 可以根据位移预测,通过基于位移预测的智能电辅助来帮助用户进行位移。实验研究。培训对象 LAMIH 实验室。8 名健康受试者接受培训,以手动轮椅进行移动。受试者从两个位置(大腿上或手把上)以三个方向(前、右和左)和两种速度(最大速度和自发速度)开始运动。共研究了 96 次运动。在三角肌前、三角肌后、肱二头肌、胸大肌、腹直肌、外斜肌和竖脊肌双侧记录了 14 块肌肉的激活情况。测量了先前的幅度、先前的时间和预期姿势调整。使用逻辑回归进行了层次多类分类,以创建一个预测模型的级联。我们使用贝叶斯信息准则对变量进行逐步(前向后)选择。通过交叉验证测量了运动分类的百分比。使用 EMG 参数进行预测是可行的,并允许以 95%的正确分类率对 6 个可能的类别(3 个方向*2 个速度)进行方向/速度组合的区分。在静态位置的动作规划表现出对即将到来的参数位移的显著适应性。本工作中提出的预测百分比使得可以设想一种直观的辅助,以适应用户的意图启动 MWC 位移。