Suppr超能文献

网络成瘾者工作记忆相关的大脑网络拓扑结构改变。

Altered brain network topology related to working memory in internet addiction.

机构信息

1School of Psychology, Liaoning Normal University, Da Lian, 116029, China.

2Department of Psychology, Renmin University of China, Beijing, 100872, China.

出版信息

J Behav Addict. 2020 Jul 7;9(2):325-338. doi: 10.1556/2006.2020.00020. Print 2020 Jun.

Abstract

BACKGROUND AND AIMS

The working memory (WM) ability of internet addicts and the topology underlying the WM processing in internet addiction (IA) are poorly understood. In this study, we employed a graph theoretical framework to characterize the topological properties of the IA brain network in the source cortical space during WM task.

METHODS

A sample of 24 subjects with IA and 23 matched healthy controls (HCs) performed visual 2-back task. Exact Low Resolution Electromagnetic Tomography was adopted to project the pre-processed EEG signals into source space. Subsequently, Lagged phase synchronization was calculated between all pairs of Brodmann areas, the graph theoretical approaches were then employed to estimate the brain topological properties of all participants during the WM task.

RESULTS

We found better WM behavioral performance in IA subjects compared with the HCs. Moreover, compared to the HC group, more integrated and hierarchical brain network was revealed in the IA subjects in alpha band. And altered regional centrality was mainly resided in frontal and limbic lobes. In addition, significant relationships between the IA severity and the significant altered graph indices were found.

CONCLUSIONS

In conclusion, these findings provide evidence to support the notion that altered topological configuration may underline changed WM function observed in IA.

摘要

背景与目的

网络成瘾者的工作记忆(WM)能力以及网络成瘾(IA)中 WM 处理的拓扑结构尚不清楚。在这项研究中,我们采用图论框架来描述 WM 任务期间源皮质空间中 IA 脑网络的拓扑性质。

方法

我们招募了 24 名 IA 患者和 23 名匹配的健康对照组(HCs)进行视觉 2 背任务。采用精确低分辨率电磁层析成像(ELRET)将预处理的 EEG 信号投影到源空间。随后,计算 Brodmann 区之间的滞后相位同步,然后在 WM 任务期间使用图论方法估计所有参与者的大脑拓扑性质。

结果

与 HCs 相比,IA 患者在 WM 行为表现上更好。此外,与 HC 组相比,IA 组在 alpha 波段显示出更集成和层次化的脑网络。改变的区域中心性主要位于额叶和边缘叶。此外,IA 严重程度与显著改变的图指标之间存在显著相关性。

结论

总之,这些发现为改变的拓扑结构可能是 WM 功能改变的原因提供了证据,这在 IA 中是可以观察到的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b9b/8939409/3df08d326eef/jba-9-325-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验