文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于脑电图同步性和功能连接性的机器学习在网络成瘾分类中的应用

Classification of internet addiction using machine learning on electroencephalography synchronization and functional connectivity.

作者信息

Huang Hsu-Wen, Li Po-Yu, Chen Meng-Cin, Chang You-Xun, Liu Chih-Ling, Chen Po-Wei, Lin Qiduo, Lin Chemin, Huang Chih-Mao, Wu Shun-Chi

机构信息

National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan.

Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Taiwan.

出版信息

Psychol Med. 2025 May 16;55:e148. doi: 10.1017/S0033291725001035.


DOI:10.1017/S0033291725001035
PMID:40376927
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12094629/
Abstract

BACKGROUND: Internet addiction (IA) refers to excessive internet use that causes cognitive impairment or distress. Understanding the neurophysiological mechanisms underpinning IA is crucial for enabling an accurate diagnosis and informing treatment and prevention strategies. Despite the recent increase in studies examining the neurophysiological traits of IA, their findings often vary. To enhance the accuracy of identifying key neurophysiological characteristics of IA, this study used the phase lag index (PLI) and weighted PLI (WPLI) methods, which minimize volume conduction effects, to analyze the resting-state electroencephalography (EEG) functional connectivity. We further evaluated the reliability of the identified features for IA classification using various machine learning methods. METHODS: Ninety-two participants (42 with IA and 50 healthy controls (HCs)) were included. PLI and WPLI values for each participant were computed, and values exhibiting significant differences between the two groups were selected as features for the subsequent classification task. RESULTS: Support vector machine (SVM) achieved an 83% accuracy rate using PLI features and an improved 86% accuracy rate using WPLI features. -test results showed analogous topographical patterns for both the WPLI and PLI. Numerous connections were identified within the delta and gamma frequency bands that exhibited significant differences between the two groups, with the IA group manifesting an elevated level of phase synchronization. CONCLUSIONS: Functional connectivity analysis and machine learning algorithms can jointly distinguish participants with IA from HCs based on EEG data. PLI and WPLI have substantial potential as biomarkers for identifying the neurophysiological traits of IA.

摘要

背景:网络成瘾(IA)是指过度使用互联网导致认知障碍或困扰。了解IA背后的神经生理机制对于准确诊断以及为治疗和预防策略提供依据至关重要。尽管最近研究IA神经生理特征的研究有所增加,但其结果往往各不相同。为了提高识别IA关键神经生理特征的准确性,本研究使用了相位滞后指数(PLI)和加权PLI(WPLI)方法,这些方法可将容积传导效应降至最低,以分析静息态脑电图(EEG)功能连接性。我们还使用各种机器学习方法评估了所识别特征用于IA分类的可靠性。 方法:纳入92名参与者(42名IA患者和50名健康对照者(HCs))。计算每个参与者的PLI和WPLI值,并选择两组之间表现出显著差异的值作为后续分类任务的特征。 结果:支持向量机(SVM)使用PLI特征的准确率达到83%,使用WPLI特征的准确率提高到86%。t检验结果显示WPLI和PLI具有相似的地形图模式。在δ和γ频段内发现了许多两组之间存在显著差异的连接,IA组表现出更高水平的相位同步。 结论:功能连接性分析和机器学习算法可以根据EEG数据共同区分IA参与者和HCs。PLI和WPLI作为识别IA神经生理特征的生物标志物具有很大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/12094629/853ee94025c1/S0033291725001035_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/12094629/05bebc5b224a/S0033291725001035_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/12094629/829f22cec87e/S0033291725001035_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/12094629/853ee94025c1/S0033291725001035_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/12094629/05bebc5b224a/S0033291725001035_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/12094629/829f22cec87e/S0033291725001035_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f789/12094629/853ee94025c1/S0033291725001035_fig3.jpg

相似文献

[1]
Classification of internet addiction using machine learning on electroencephalography synchronization and functional connectivity.

Psychol Med. 2025-5-16

[2]
Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG.

PLoS One. 2014-10-6

[3]
Differential classification of states of consciousness using envelope- and phase-based functional connectivity.

Neuroimage. 2021-8-15

[4]
Identification of Alzheimer's disease brain networks based on EEG phase synchronization.

Biomed Eng Online. 2025-3-9

[5]
Random topology organization and decreased visual processing of internet addiction: Evidence from a minimum spanning tree analysis.

Brain Behav. 2019-1-31

[6]
Altered topological connectivity of internet addiction in resting-state EEG through network analysis.

Addict Behav. 2019-2-26

[7]
Multimodal-based machine learning approach to classify features of internet gaming disorder and alcohol use disorder: A sensor-level and source-level resting-state electroencephalography activity and neuropsychological study.

Compr Psychiatry. 2024-4

[8]
Benchmarking metrics for inferring functional connectivity from multi-channel EEG and MEG: A simulation study.

Chaos. 2020-12

[9]
EEG based functional connectivity in resting and emotional states may identify major depressive disorder using machine learning.

Clin Neurophysiol. 2024-8

[10]
Identifying Internet Addiction and Evaluating the Efficacy of Treatment Based on Functional Connectivity Density: A Machine Learning Study.

Front Neurosci. 2021-6-17

本文引用的文献

[1]
Altered Inhibitory Control Mechanism of Internet Addiction: An Electroencephalogram Study of Brain Oscillations and Connectivity.

Annu Int Conf IEEE Eng Med Biol Soc. 2023-7

[2]
Overview on brain function enhancement of Internet addicts through exercise intervention: Based on reward-execution-decision cycle.

Front Psychiatry. 2023-2-2

[3]
Neurofeedback for the Education of Children with ADHD and Specific Learning Disorders: A Review.

Brain Sci. 2022-9-14

[4]
A prediction model integrating synchronization biomarkers and clinical features to identify responders to vagus nerve stimulation among pediatric patients with drug-resistant epilepsy.

CNS Neurosci Ther. 2022-11

[5]
Enhanced resting-state EEG source functional connectivity within the default mode and reward-salience networks in internet gaming disorder.

Psychol Med. 2022-8

[6]
Global prevalence of digital addiction in general population: A systematic review and meta-analysis.

Clin Psychol Rev. 2022-3

[7]
Identifying Internet Addiction and Evaluating the Efficacy of Treatment Based on Functional Connectivity Density: A Machine Learning Study.

Front Neurosci. 2021-6-17

[8]
Benchmarking metrics for inferring functional connectivity from multi-channel EEG and MEG: A simulation study.

Chaos. 2020-12

[9]
Automatic analysis of single-channel sleep EEG in a large spectrum of sleep disorders.

J Clin Sleep Med. 2021-3-1

[10]
Altered brain network topology related to working memory in internet addiction.

J Behav Addict. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索