Suppr超能文献

一种基于高维协变量稳定得分检验的生存树。

A survival tree based on stabilized score tests for high-dimensional covariates.

作者信息

Emura Takeshi, Hsu Wei-Chern, Chou Wen-Chi

机构信息

Biostatistics Center, Kurume University, Kurume, Japan.

Graduate Institute of Statistics, National Central University, Taoyuan, Taiwan.

出版信息

J Appl Stat. 2021 Oct 21;50(2):264-290. doi: 10.1080/02664763.2021.1990224. eCollection 2023.

Abstract

A survival tree can classify subjects into different survival prognostic groups. However, when data contains high-dimensional covariates, the two popular classification trees exhibit fatal drawbacks. The logrank tree is unstable and tends to have false nodes; the conditional inference tree is difficult to interpret the adjusted -value for high-dimensional tests. Motivated by these problems, we propose a new survival tree based on the stabilized score tests. We propose a novel matrix-based algorithm in order to tests a number of nodes simultaneously via stabilized score tests. We propose a recursive partitioning algorithm to construct a survival tree and develop our original R package (https://cran.r-project.org/package=uni.survival.tree) for implementation. Simulations are performed to demonstrate the superiority of the proposed method over the existing methods. The lung cancer data analysis demonstrates the usefulness of the proposed method.

摘要

生存树可以将研究对象分类到不同的生存预后组中。然而,当数据包含高维协变量时,两种常用的分类树存在致命缺陷。对数秩树不稳定,容易出现虚假节点;条件推断树难以解释高维检验的调整p值。受这些问题的启发,我们提出了一种基于稳定得分检验的新生存树。我们提出了一种新颖的基于矩阵的算法,以便通过稳定得分检验同时检验多个节点。我们提出了一种递归划分算法来构建生存树,并开发了我们自己的R原始包(https://cran.r-project.org/package=uni.survival.tree)用于实现。进行模拟以证明所提出的方法优于现有方法。肺癌数据分析证明了所提出方法的实用性。

相似文献

1
4
Knockoff boosted tree for model-free variable selection.无模型变量选择的仿射提升树。
Bioinformatics. 2021 May 17;37(7):976-983. doi: 10.1093/bioinformatics/btaa770.
7
Piecewise-linear criterion functions in oblique survival tree induction.倾斜生存树归纳中的分段线性准则函数。
Artif Intell Med. 2017 Jan;75:32-39. doi: 10.1016/j.artmed.2016.12.004. Epub 2017 Jan 3.

本文引用的文献

5
Factorial analyses of treatment effects under independent right-censoring.独立右删失情况下治疗效果的因子分析。
Stat Methods Med Res. 2020 Feb;29(2):325-343. doi: 10.1177/0962280219831316. Epub 2019 Mar 5.
6
compound.Cox: Univariate feature selection and compound covariate for predicting survival.Cox 单变量特征选择和复合协变量预测生存。
Comput Methods Programs Biomed. 2019 Jan;168:21-37. doi: 10.1016/j.cmpb.2018.10.020. Epub 2018 Oct 27.
9
Survival forests for data with dependent censoring.带有相依删失数据的生存森林。
Stat Methods Med Res. 2019 Feb;28(2):445-461. doi: 10.1177/0962280217727314. Epub 2017 Aug 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验