Yeh Chih-Tung, Liao Gen-Yih, Emura Takeshi
Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan.
Biostatistics Center, Kurume University, Kurume 830-0011, Japan.
Biomedicines. 2023 Mar 6;11(3):797. doi: 10.3390/biomedicines11030797.
Prognostic analysis for patient survival often employs gene expressions obtained from high-throughput screening for tumor tissues from patients. When dealing with survival data, a dependent censoring phenomenon arises, and thus the traditional Cox model may not correctly identify the effect of each gene. A copula-based gene selection model can effectively adjust for dependent censoring, yielding a multi-gene predictor for survival prognosis. However, methods to assess the impact of various types of dependent censoring on the multi-gene predictor have not been developed. In this article, we propose a sensitivity analysis method using the copula-graphic estimator under dependent censoring, and implement relevant methods in the R package "compound.Cox". The purpose of the proposed method is to investigate the sensitivity of the multi-gene predictor to a variety of dependent censoring mechanisms. In order to make the proposed sensitivity analysis practical, we develop a web application. We apply the proposed method and the web application to a lung cancer dataset. We provide a template file so that developers can modify the template to establish their own web applications.
患者生存预后分析通常采用从患者肿瘤组织高通量筛查中获得的基因表达数据。在处理生存数据时,会出现相依删失现象,因此传统的Cox模型可能无法正确识别每个基因的效应。基于copula的基因选择模型可以有效调整相依删失,从而产生用于生存预后的多基因预测指标。然而,尚未开发出评估各种类型相依删失对多基因预测指标影响的方法。在本文中,我们提出了一种在相依删失情况下使用copula图形估计器的敏感性分析方法,并在R包“compound.Cox”中实现了相关方法。所提方法的目的是研究多基因预测指标对各种相依删失机制的敏感性。为了使所提敏感性分析具有实用性,我们开发了一个网络应用程序。我们将所提方法和网络应用程序应用于一个肺癌数据集。我们提供了一个模板文件,以便开发者可以修改模板来建立自己的网络应用程序。