Suppr超能文献

基于 U-Net 的多核精原细胞自动识别。

Automated identification of multinucleated germ cells with U-Net.

机构信息

Brown University, Providence, RI, United States of America.

Planetary Science Institute, Tucson, AZ, United States of America.

出版信息

PLoS One. 2020 Jul 9;15(7):e0229967. doi: 10.1371/journal.pone.0229967. eCollection 2020.

Abstract

Phthalic acid esters (phthalates) are male reproductive toxicants, which exert their most potent toxicity during fetal development. In the fetal rat, exposure to phthalates reduces testosterone biosynthesis, alters the development of seminiferous cords and other male reproductive tissues, and induces the formation of abnormal multinucleated germ cells (MNGs). Identification of MNGs is a time-intensive process, and it requires specialized training to identify MNGs in histological sections. As a result, MNGs are not routinely quantified in phthalate toxicity experiments. In order to speed up and standardize this process, we have developed an improved method for automated detection of MNGs. Using hand-labeled histological section images with human-identified MNGs, we trained a convolutional neural network with a U-Net architecture to identify MNGs on unlabeled images. With unseen hand-labeled images not used in model training, we assessed the performance of the model, using five different configurations of the data. On average, the model reached near human accuracy, and in the best model, it exceeded it. The use of automated image analysis will allow data on this histopathological endpoint to be more readily collected for analysis of phthalate toxicity. Our trained model application code is available for download at github.com/brown-ccv/mngcount.

摘要

邻苯二甲酸酯(邻苯二甲酸盐)是雄性生殖毒物,在胎儿发育过程中发挥最强烈的毒性。在胎鼠中,暴露于邻苯二甲酸酯会降低睾丸激素的生物合成,改变精曲小管和其他雄性生殖组织的发育,并诱导异常多核精原细胞(MNG)的形成。MNG 的鉴定是一个耗时的过程,需要专门的培训才能在组织学切片中识别 MNG。因此,在邻苯二甲酸盐毒性实验中通常不会定量 MNG。为了加快和标准化这个过程,我们开发了一种改进的自动化检测 MNG 的方法。使用带有人类鉴定的 MNG 的手动标记的组织学切片图像,我们使用具有 U-Net 架构的卷积神经网络来对未标记的图像上的 MNG 进行识别。使用未在模型训练中使用的看不见的手动标记图像,我们使用五种不同的数据配置评估了模型的性能。平均而言,该模型达到了接近人类的准确性,在最佳模型中,它超过了人类的准确性。自动化图像分析的使用将允许更方便地收集关于这个组织病理学终点的数据,以分析邻苯二甲酸盐的毒性。我们训练好的模型应用程序代码可在 github.com/brown-ccv/mngcount 上下载。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验