Suppr超能文献

利用 311 数据开发一种算法,以识别城市衰败现象,从而改善公共卫生。

Using 311 data to develop an algorithm to identify urban blight for public health improvement.

机构信息

New York State Health Foundation, New York, New York, United States of America.

Harvard College, Harvard University, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2020 Jul 9;15(7):e0235227. doi: 10.1371/journal.pone.0235227. eCollection 2020.

Abstract

The growth of administrative data made available publicly, often in near-real time, offers new opportunities for monitoring conditions that impact community health. Urban blight-manifestations of adverse social processes in the urban environment, including physical disorder, decay, and loss of anchor institutions-comprises many conditions considered to negatively affect the health of communities. However, measurement strategies for urban blight have been complicated by lack of uniform data, often requiring expensive street audits or the use of proxy measures that cannot represent the multifaceted nature of blight. This paper evaluates how publicly available data from New York City's 311-call system can be used in a natural language processing approach to represent urban blight across the city with greater geographic and temporal precision. We found that our urban blight algorithm, which includes counts of keywords ('tokens'), resulted in sensitivity ~90% and specificity between 55% and 76%, depending on other covariates in the model. The percent of 311 calls that were 'blight related' at the census tract level were correlated with the most common proxy measure for blight: short, medium, and long-term vacancy rates for commercial and residential buildings. We found the strongest association with long-term (>1 year) commercial vacancies (Pearson's correlation coefficient = 0.16, p < 0.001). Our findings indicate the need of further validation, as well as testing algorithms that disambiguate the different facets of urban blight. These facets include physical disorder (e.g., litter, overgrown lawns, or graffiti) and decay (e.g., vacant or abandoned lots or sidewalks in disrepair) that are manifestations of social processes such as (loss of) neighborhood cohesion, social control, collective efficacy, and anchor institutions. More refined measures of urban blight would allow for better targeted remediation efforts and improved community health.

摘要

公共领域中可用的行政数据的增长,通常是近乎实时的,为监测影响社区健康的条件提供了新的机会。城市衰败——城市环境中不良社会进程的表现,包括物理无序、衰败和锚定机构的丧失——包含了许多被认为对社区健康产生负面影响的条件。然而,由于缺乏统一的数据,城市衰败的衡量策略变得复杂,通常需要昂贵的街道审计或使用无法代表衰败多面性的代理措施。本文评估了如何在自然语言处理方法中使用纽约市 311 呼叫系统提供的公开数据,以更精确的地理和时间精度代表整个城市的城市衰败。我们发现,我们的城市衰败算法,包括关键字(“令牌”)的计数,其敏感性约为 90%,特异性在 55%到 76%之间,具体取决于模型中的其他协变量。在普查区层面,与 311 相关的呼叫百分比与城市衰败最常见的代理措施相关:商业和住宅建筑的短期、中期和长期空缺率。我们发现与长期(>1 年)商业空缺率的关联最强(皮尔逊相关系数=0.16,p<0.001)。我们的研究结果表明需要进一步验证,以及测试能够区分城市衰败不同方面的算法。这些方面包括物理无序(例如,垃圾、杂草丛生的草坪或涂鸦)和衰败(例如,废弃或废弃的地段或失修的人行道),这些都是邻里凝聚力、社会控制、集体效能和锚定机构等社会进程的表现。更精细的城市衰败衡量标准将能够更好地进行有针对性的补救工作,并改善社区健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abf7/7347128/308db2f1a2f9/pone.0235227.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验