Suppr超能文献

多变量逻辑回归和线性回归模型在骨关节炎临床有用生物标志物识别中的应用。

Multivariable logistic and linear regression models for identification of clinically useful biomarkers for osteoarthritis.

机构信息

Translational Health Sciences, Bristol Medical School, Musculoskeletal Research Unit, Southmead Hospital, University of Bristol, Learning and Research Building (Level 2), Bristol, BS10 5NB, UK.

University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.

出版信息

Sci Rep. 2020 Jul 9;10(1):11328. doi: 10.1038/s41598-020-68077-0.

Abstract

Osteoarthritis (OA) is the most common chronic degenerative joint disease which causes substantial joint pain, deformity and loss of activities of daily living. Currently, there are over 500 million OA cases worldwide, and there is an urgent need to identify biomarkers for early detection, and monitoring disease progression in patients without obvious radiographic damage to the joint. We have used regression modelling to describe the association of 19 of the currently available biomarkers (predictors) with key radiographic and clinical features of OA (outcomes) in one of the largest and best characterised OA cohort (NIH Osteoarthritis Initiative). We demonstrate that of the 19 currently available biomarkers only 4 (serum Coll2-1 NO2, CS846, COMP and urinary CTXII) were consistently associated with established radiographic and/or clinical features of OA. These biomarkers are independent of one another and provide additional predictive power over, and above established predictors of OA such as age, gender, BMI and race. We also show that that urinary CTXII had the strongest and consistent associations with clinical symptoms of OA as well as radiographic evidence of joint damage. Accordingly, urinary CTXII may aid in early diagnosis of OA in symptomatic patients without radiographic evidence of OA.

摘要

骨关节炎(OA)是最常见的慢性退行性关节疾病,可导致严重的关节疼痛、畸形和日常生活活动能力丧失。目前,全世界有超过 5 亿例 OA 患者,迫切需要确定生物标志物来进行早期检测,并监测关节无明显放射学损伤的患者的疾病进展。我们使用回归模型来描述在最大和特征最好的 OA 队列之一(NIH 骨关节炎倡议)中,19 种现有生物标志物(预测因子)与 OA 的关键放射学和临床特征(结局)之间的关联。我们证明,在 19 种现有生物标志物中,只有 4 种(血清 Coll2-1NO2、CS846、COMP 和尿 CTXII)与 OA 的既定放射学和/或临床特征始终相关。这些生物标志物彼此独立,并且提供了比 OA 的既定预测因子(如年龄、性别、BMI 和种族)更高的预测能力。我们还表明,尿 CTXII 与 OA 的临床症状以及关节损伤的放射学证据具有最强和一致的关联。因此,尿 CTXII 可能有助于在没有 OA 放射学证据的情况下,对有症状的 OA 患者进行早期诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdca/7347626/add618f5e0ac/41598_2020_68077_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验