Isik Mustafa Serkan, Parente Leandro, Consoli Davide, Sloat Lindsey, Mesquita Vinicius Vieira, Ferreira Laerte Guimaraes, Sabbatini Simone, Stanimirova Radost, Teles Nathalia Monteiro, Robinson Nathaniel, Costa Junior Ciniro, Hengl Tomislav
OpenGeoHub, Doorwerth, Netherlands.
Land & Carbon Lab, World Resources Institute, Washington DC, United States.
PeerJ. 2025 Aug 12;13:e19774. doi: 10.7717/peerj.19774. eCollection 2025.
The article describes production of a high spatial resolution (30 m) bimonthly light use efficiency (LUE) based gross primary productivity (GPP) data set representing grasslands for the period 2000 to 2022. The data set is based on using reconstructed global complete consistent bimonthly Landsat archive (400TB of data), combined with 1 km MOD11A1 temperature data and 1° CERES Photosynthetically Active Radiation (PAR). First, the LUE model was implemented by taking the biome-specific productivity factor (maximum LUE parameter) as a global constant, producing a global bimonthly (uncalibrated) productivity data for the complete land mask. Second, the GPP 30 m bimonthly maps were derived for the global grassland annual predictions and calibrating the values based on the maximum LUE factor of 0.86 gCmdMJ. The results of validation of the produced GPP estimates based on 527 eddy covariance flux towers show an R-square between 0.48-0.71 and root mean square error (RMSE) below 2.3 gCmd for all land cover classes. Using a total of 92 flux towers located in grasslands, the validation of the GPP product calibrated for the grassland biome revealed an R-square between 0.51-0.70 and an RMSE smaller than ~2 gCmd. The final time-series of maps (uncalibrated and grassland GPP) are available as bimonthly (daily estimates in units of gCmd) and annual (daily average accumulated by 365 days in units of gCmyr) in Cloud-Optimized GeoTIFF (23TB in size) as open data (CC-BY license). The recommended uses of data include: trend analysis ., to determine where are the largest losses in GPP and which could be an indicator of potential land degradation, crop yield mapping and for modeling GHG fluxes at finer spatial resolution. Produced maps are available SpatioTemporal Asset Catalog (http://stac.openlandmap.org) and Google Earth Engine.
本文描述了2000年至2022年期间基于高空间分辨率(30米)双月光能利用效率(LUE)的草地总初级生产力(GPP)数据集的生成。该数据集基于使用重建的全球完整一致双月陆地卫星存档(400TB数据),结合1千米的MOD11A1温度数据和1°的CERES光合有效辐射(PAR)。首先,通过将特定生物群落生产力因子(最大LUE参数)作为全局常数来实施LUE模型,生成完整陆地掩膜的全球双月(未校准)生产力数据。其次,得出全球草地年度预测的30米双月GPP地图,并根据0.86克碳/兆焦耳的最大LUE因子校准这些值。基于527个涡度协方差通量塔对生成的GPP估计值进行验证的结果表明,所有土地覆盖类别的决定系数(R平方)在0.48至0.71之间,均方根误差(RMSE)低于约2.3克碳/平方米天。使用位于草地的总共92个通量塔,对针对草地生物群落校准的GPP产品进行验证,结果显示决定系数在0.51至0.70之间,RMSE小于约2克碳/平方米天。最终的地图时间序列(未校准和草地GPP)以双月(单位为克碳/平方米天的每日估计值)和年度(365天每日平均值,单位为克碳/平方米年)的形式作为云优化地理TIFF格式(大小约23TB)的开放数据(知识共享署名许可协议)提供。数据的推荐用途包括:趋势分析,以确定GPP损失最大的区域,这可能是潜在土地退化的指标;作物产量制图;以及在更精细的空间分辨率下对温室气体通量进行建模。生成的地图可在时空资产目录(http://stac.openlandmap.org)和谷歌地球引擎中获取。