Suppr超能文献

过氧化氢酶主要通道结构与耐冷过氧化氢耐受性进化方向之间的关系以及……(原文最后不完整)

Relationship Between Main Channel Structure of Catalases and the Evolutionary Direction in Cold-Adapted Hydrogen Peroxide-Tolerant and .

作者信息

Hanaoka Yoshiko, Kimoto Hideyuki, Yoshimume Kazuaki, Hara Isao, Matsuyama Hidetoshi, Yumoto Isao

机构信息

Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517 Japan.

出版信息

Indian J Microbiol. 2020 Sep;60(3):353-362. doi: 10.1007/s12088-020-00878-3. Epub 2020 May 6.

Abstract

Catalase has crucial role in adaptive response to HO. Main channel structure responsible for substrate selectivity was estimated to understand the relationship between the evolutionary direction of catalases from and which survive in cold and high concentration of hydrogen peroxide, and their catalytic property. . catalase (EKTA) exhibited a higher ratio of compound I formation rate using peracetic acid (a substrate lager than HO)/catalase activity using HO as the substrate than . catalase (PKTA). It was considered that the ratio was attributed to the size of the amino acid residues locating at the bottle neck structure in the main channel. The differences in the ratio of the compound I formation rate with peracetic acid to catalase activity with HO between the deeper branches in the phylogenetic tree in both EKTA and PKTA were large. This indicates that catalases from the hydrogen peroxide-tolerant bacteria have evolved in different directions, exhibiting effective catalytic activity and allowing broader substrates size or HO-specific substrate acceptability in EKTA and PKTA, respectively. It is considered that the main channel structure reflected the difference in the evolutionary direction of clade 1 and clade 3 catalases.

摘要

过氧化氢酶在对过氧化氢的适应性反应中起关键作用。通过估计负责底物选择性的主要通道结构,以了解在寒冷和高浓度过氧化氢环境中存活的过氧化氢酶的进化方向与其催化特性之间的关系。嗜冷栖热袍菌过氧化氢酶(EKTA)与嗜热栖热袍菌过氧化氢酶(PKTA)相比,使用过氧乙酸(一种比过氧化氢更大的底物)时化合物I形成速率与使用过氧化氢作为底物时的过氧化氢酶活性之比更高。据认为,该比例归因于位于主通道瓶颈结构处的氨基酸残基的大小。在系统发育树中,EKTA和PKTA较深分支中过氧乙酸与过氧化氢酶活性的化合物I形成速率之比差异很大。这表明来自耐过氧化氢细菌的过氧化氢酶已朝着不同方向进化,分别在EKTA和PKTA中表现出有效的催化活性,并允许更宽的底物大小或对过氧化氢特异性底物的接受性。据认为,主通道结构反映了1类和3类过氧化氢酶进化方向的差异。

相似文献

4
Fungal catalases: function, phylogenetic origin and structure.真菌过氧化氢酶:功能、系统发生起源与结构。
Arch Biochem Biophys. 2012 Sep 15;525(2):170-80. doi: 10.1016/j.abb.2012.05.014. Epub 2012 Jun 12.
7
Catalase evolved to concentrate H2O2 at its active site.过氧化氢酶的进化使得 H2O2 能够在其活性部位聚集。
Arch Biochem Biophys. 2010 Aug 1;500(1):82-91. doi: 10.1016/j.abb.2010.05.017. Epub 2010 May 28.

本文引用的文献

2
Catalase and its mysteries.过氧化氢酶及其奥秘。
Prog Biophys Mol Biol. 2018 Dec;140:5-12. doi: 10.1016/j.pbiomolbio.2018.03.001. Epub 2018 Mar 9.
7
Molecular evolution of hydrogen peroxide degrading enzymes.过氧化氢降解酶的分子进化。
Arch Biochem Biophys. 2012 Sep 15;525(2):131-44. doi: 10.1016/j.abb.2012.01.017. Epub 2012 Feb 7.
10
Evolution of catalases from bacteria to humans.过氧化氢酶从细菌到人类的进化。
Antioxid Redox Signal. 2008 Sep;10(9):1527-48. doi: 10.1089/ars.2008.2046.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验