Hürtgen Daniel, Murray Seán M, Mascarenhas Judita, Sourjik Victor
MPI for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, 35043, Germany.
Adv Biosyst. 2019 Jun;3(6):e1800316. doi: 10.1002/adbi.201800316. Epub 2019 Feb 25.
Faithful segregation of replicated genomes to dividing daughter cells is a major hallmark of cellular life and needs to be part of the future design of the robustly proliferating minimal cell. So far, the complexity of eukaryotic chromosome segregation machineries has limited their applicability to synthetic systems. Prokaryotic plasmid segregation machineries offer promising alternative tools for bottom-up synthetic biology, with the first three-component DNA segregation system being reconstituted a decade ago. In this review, the mechanisms underlying DNA segregation in prokaryotes, with a particular focus on segregation of plasmids and chromosomal replication origins are reviewed, along with a brief discussion of archaeal and eukaryotic systems. In addition, this review shows how in vitro reconstitution has allowed deeper insights into these processes and discusses possible applications of these machineries for a minimal synthetic segrosome as well as the challenge of its coupling to a minimal replisome.
将复制后的基因组准确分离到分裂的子细胞中是细胞生命的一个主要标志,并且需要成为未来强健增殖的最小细胞设计的一部分。到目前为止,真核染色体分离机制的复杂性限制了它们在合成系统中的应用。原核生物的质粒分离机制为自下而上的合成生物学提供了有前景的替代工具,第一个三组分DNA分离系统在十年前就已被重建。在这篇综述中,我们回顾了原核生物中DNA分离的潜在机制,特别关注质粒和染色体复制起点的分离,同时简要讨论了古细菌和真核生物系统。此外,这篇综述展示了体外重建如何使我们对这些过程有更深入的了解,并讨论了这些机制在最小合成分离体中的可能应用以及将其与最小复制体偶联所面临的挑战。