Suppr超能文献

液相剥离二维半导体的缺陷工程:电子横向异质网络的逐步共价生长

Defect-engineering of liquid-phase exfoliated 2D semiconductors: stepwise covalent growth of electronic lateral hetero-networks.

作者信息

Ricciardulli Antonio Gaetano, Petoukhoff Christopher E, Zhuravlova Anna, Kelly Adam G, Ma Chun, Laquai Frédéric, Coleman Jonathan N, Samorì Paolo

机构信息

Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000 Strasbourg, France.

King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

出版信息

Mater Horiz. 2024 Nov 11;11(22):5614-5621. doi: 10.1039/d4mh00882k.

Abstract

Two-dimensional (2D) in-plane heterostructures display exceptional optical and electrical properties well beyond those of their pristine components. However, they are usually produced by tedious and energy-intensive bottom-up growth approaches, not compatible with scalable solution-processing technologies. Here, we report a new stepwise microfluidic approach, based on defect engineering of liquid-phase exfoliated transition metal dichalcogenides (TMDs), to synthesize 2D hetero-networks. The healing of sulfur vacancies in MoS and WS is exploited to controllably bridge adjacent nanosheets of different chemical nature with dithiolated conjugated molecular linkers, yielding solution-processed nm-scale thick networks with enhanced percolation pathways for charge transport. In-plane growth and molecular-driven assembly synergistically lead to molecularly engineered heterojunctions suppressing the formation of tightly bound interlayer excitons that are typical of conventional TMD blends, promoting faster charge separation. Our strategy offers an unprecedented route to chemically assemble solution-processed heterostructures with functional complexity that can be further enhanced by exploiting stimuli-responsive molecular linkers.

摘要

二维(2D)平面内异质结构展现出卓越的光学和电学特性,远超过其原始组分。然而,它们通常是通过繁琐且耗能的自下而上生长方法制备的,与可扩展的溶液处理技术不兼容。在此,我们报道一种基于液相剥离过渡金属二硫属化物(TMDs)缺陷工程的新型分步微流控方法,用于合成二维异质网络。利用MoS和WS中硫空位的修复,通过二硫醇化共轭分子连接体可控地桥接不同化学性质的相邻纳米片,得到溶液处理的纳米级厚网络,其电荷传输的渗流路径得到增强。平面内生长和分子驱动组装协同作用,导致分子工程异质结抑制传统TMD混合物中典型的紧密结合层间激子的形成,促进更快的电荷分离。我们的策略提供了一条前所未有的途径,通过化学组装具有功能复杂性的溶液处理异质结构,利用刺激响应性分子连接体可进一步增强其功能复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验