Maity Dipak, Yadav Rajesh Kumar, Levi Adi, Sharma Rahul, Ber Emanuel, Yalon Eilam, Biroju Ravi K, Vretenár Viliam, Narayanan Tharangattu N, Naveh Doron
Materials & Interface Engineering Laboratory, Tata Institute of Fundamental Research, Sy No 36/P Serilingampally Mandal, Hyderabad, 500046, India.
Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
Small Methods. 2025 Jul;9(7):e2401938. doi: 10.1002/smtd.202401938. Epub 2024 Dec 29.
2D transition-metal dichalcogenide semiconductors such as MoS are identified as a platform for next-generation electronic circuitries. However, the progress toward industrial applications is still lagging due to imperfections of wafer-scale deposition techniques and in-contact parasitic impedance affecting device integration in large circuits and systems. Here, on contact engineering of large-scale, chemical vapor deposition (CVD) grown monolayer MoS films is reported, leading to improved performance of field effect transistors. The transistor performance of monolayer pure MoS is initially characterized by its I/I ratio (10), carrier density (≈10 cm), and mobility (≈10 cm Vs), and the Schottky barrier height (SBH) of conventional metallic Au contact of MoS (≈215 meV). Then, a CVD-grown degenerately-doped monolayer of alloy VMoS is introduced between Au and MoS of a modified transistor, reducing the SBH to ≈100 meV. The reduced contact resistance (≈50%) of the device with an atomically thin contact interface complies with the theoretical model and is free from Fermi-level pinning effects. It is resilient to the high temperatures that are characteristic of physical metallization methods and is readily scalable.
二维过渡金属二硫属化物半导体(如二硫化钼)被视为下一代电子电路的一个平台。然而,由于晶圆级沉积技术存在缺陷以及影响大尺寸电路和系统中器件集成的接触寄生阻抗,其在工业应用方面的进展仍然滞后。在此,报道了关于大规模化学气相沉积(CVD)生长的单层二硫化钼薄膜的接触工程,这使得场效应晶体管的性能得到改善。单层纯二硫化钼的晶体管性能最初由其电流开/关比(10)、载流子密度(≈10厘米)和迁移率(≈10厘米²伏⁻¹秒⁻¹)以及二硫化钼传统金属金接触的肖特基势垒高度(SBH)(≈215毫电子伏特)来表征。然后,在一个改进晶体管的金和二硫化钼之间引入了化学气相沉积生长的简并掺杂合金VMoS单层,将肖特基势垒高度降低到≈100毫电子伏特。具有原子级薄接触界面的器件接触电阻降低(≈50%)符合理论模型,且不存在费米能级钉扎效应。它对物理金属化方法特有的高温具有耐受性,并且易于扩展。