College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China.
Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China.
Nucleic Acids Res. 2023 Nov 27;51(21):e110. doi: 10.1093/nar/gkad929.
RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA/protein/compound), and various computational methods are available for identifying these interactions. However, the encoding features provided by existing methods are limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in (a) realizing comprehensive RNA feature encoding by introducing a great many of novel features and (b) enabling task-specific integration of interacting partners using convolutional autoencoder-directed feature embedding. Compared with existing methods/tools, this novel algorithm demonstrated superior performances in diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https://idrblab.org/corain/ and https://github.com/idrblab/corain/.
RNAs 通过与其他分子(RNA/蛋白质/化合物)相互作用,在多种生理和病理过程中发挥着至关重要的作用,并且有多种计算方法可用于识别这些相互作用。然而,现有方法提供的编码特征有限,并且现有的工具也没有提供一种有效的方法来整合相互作用的伙伴。在这项研究中,因此开发了一种针对 RNA 及其相关相互作用的特定任务的编码算法。这个新算法的独特之处在于(a)通过引入大量新特征实现了全面的 RNA 特征编码,以及(b)使用卷积自动编码器指导的特征嵌入实现了特定任务的相互作用伙伴的整合。与现有方法/工具相比,这个新算法在各种基准测试研究中表现出了优越的性能。这个算法及其源代码可以在以下网址中被所有用户轻松访问:https://idrblab.org/corain/ 和 https://github.com/idrblab/corain/。