Suppr超能文献

利用自组织映射评估染色质相互作用与调控基因组活性之间的关系。

Assessing relationships between chromatin interactions and regulatory genomic activities using the self-organizing map.

机构信息

Biochemistry & Molecular Biology Department, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, USA.

Biochemistry & Molecular Biology Department, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, USA.

出版信息

Methods. 2021 May;189:12-21. doi: 10.1016/j.ymeth.2020.07.002. Epub 2020 Jul 9.

Abstract

Few existing methods enable the visualization of relationships between regulatory genomic activities and genome organization as captured by Hi-C experimental data. Genome-wide Hi-C datasets are often displayed using "heatmap" matrices, but it is difficult to intuit from these heatmaps which biochemical activities are compartmentalized together. High-dimensional Hi-C data vectors can alternatively be projected onto three-dimensional space using dimensionality reduction techniques. The resulting three-dimensional structures can serve as scaffolds for projecting other forms of genomic information, thereby enabling the exploration of relationships between genome organization and various genome annotations. However, while three-dimensional models are contextually appropriate for chromatin interaction data, some analyses and visualizations may be more intuitively and conveniently performed in two-dimensional space. We present a novel approach to the visualization and analysis of chromatin organization based on the Self-Organizing Map (SOM). The SOM algorithm provides a two-dimensional manifold which adapts to represent the high dimensional chromatin interaction space. The resulting data structure can then be used to assess relationships between regulatory genomic activities and chromatin interactions. For example, given a set of genomic coordinates corresponding to a given biochemical activity, the degree to which this activity is segregated or compartmentalized in chromatin interaction space can be intuitively visualized on the 2D SOM grid and quantified using Lorenz curve analysis. We demonstrate our approach for exploratory analysis of genome compartmentalization in a high-resolution Hi-C dataset from the human GM12878 cell line. Our SOM-based approach provides an intuitive visualization of the large-scale structure of Hi-C data and serves as a platform for integrative analyses of the relationships between various genomic activities and genome organization.

摘要

目前很少有方法能够将调控基因组活动与 Hi-C 实验数据所捕获的基因组组织之间的关系可视化。全基因组 Hi-C 数据集通常使用“热图”矩阵进行显示,但从这些热图中很难直观地看出哪些生化活性是一起分隔开的。高维 Hi-C 数据向量可以使用降维技术投射到三维空间中。生成的三维结构可以作为投射其他形式基因组信息的支架,从而能够探索基因组组织与各种基因组注释之间的关系。然而,虽然三维模型对于染色质相互作用数据是上下文适当的,但一些分析和可视化可能在二维空间中更直观和方便地进行。我们提出了一种基于自组织映射(SOM)的染色质组织可视化和分析的新方法。SOM 算法提供了一个二维流形,自适应地表示高维染色质相互作用空间。然后可以使用所得的数据结构来评估调控基因组活动和染色质相互作用之间的关系。例如,给定一组对应于给定生化活性的基因组坐标,可以直观地在 2D SOM 网格上可视化该活性在染色质相互作用空间中的隔离或分隔程度,并使用 Lorenz 曲线分析进行量化。我们在人类 GM12878 细胞系的高分辨率 Hi-C 数据集上演示了我们的方法用于探索性的基因组分隔分析。我们基于 SOM 的方法提供了 Hi-C 数据的大规模结构的直观可视化,并作为整合分析各种基因组活性和基因组组织之间关系的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验