Suppr超能文献

通过脯氨酸取代提高W3 ω-转氨酶的催化热稳定性。

Improving the catalytic thermostability of W3 ω-transaminase by proline substitutions.

作者信息

Xie Zihao, Zhai Lixin, Meng Di, Tian Qiaopeng, Guan Zhengbing, Cai Yujie, Liao Xiangru

机构信息

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu PR China.

出版信息

3 Biotech. 2020 Jul;10(7):323. doi: 10.1007/s13205-020-02321-2. Epub 2020 Jun 29.

Abstract

As a green biocatalyst, transaminase with high thermostability can be better employed to synthesize many pharmaceutical intermediates in industry. To improve the thermostability of ()-selective amine transaminase from W3, related mutation sites were determined by multiple amino acid sequence alignment between wild-type ω-transaminase and four potential thermophilic ω-transaminases, followed by replacement of the related amino acid residues with proline by site-directed mutagenesis. Three stabilized mutants (D192P, T237P, and D192P/T237P) showing the highest stability were obtained and used for further analysis. Comparison with the wild-type enzyme revealed that the double mutant D192P/T237P exhibited the largest shift in thermostability, with a 2.5-fold improvement of at 40 °C, and a 6.3 °C increase in , and a 5 °C higher optimal catalytic temperature. Additionally, this mutant exhibited an increase in catalytic efficiency ( / ) relative to the wild-type enzyme. Modeling analysis indicated that the improved thermostability of the mutants could be associated with newly formed hydrophobic interactions and hydrogen bonds. This study shown that proline substitutions guided by sequence alignment to improve the thermostability of ()-selective amine transaminase was effective and this method can also be used to engineering other enzymes.

摘要

作为一种绿色生物催化剂,具有高热稳定性的转氨酶能够更好地应用于工业中多种药物中间体的合成。为提高来自W3的()-选择性胺转氨酶的热稳定性,通过野生型ω-转氨酶与四种潜在嗜热ω-转氨酶之间的多氨基酸序列比对确定相关突变位点,随后通过定点诱变将相关氨基酸残基替换为脯氨酸。获得了三个显示出最高稳定性的稳定突变体(D192P、T237P和D192P/T237P)并用于进一步分析。与野生型酶的比较表明,双突变体D192P/T237P在热稳定性方面表现出最大的变化,在40°C时半衰期提高了2.5倍,熔点增加了6.3°C,最佳催化温度提高了5°C。此外,该突变体相对于野生型酶的催化效率(/)有所提高。建模分析表明,突变体热稳定性的提高可能与新形成的疏水相互作用和氢键有关。本研究表明,通过序列比对指导脯氨酸取代以提高()-选择性胺转氨酶的热稳定性是有效的,并且该方法也可用于其他酶的工程改造。

相似文献

1
Improving the catalytic thermostability of W3 ω-transaminase by proline substitutions.
3 Biotech. 2020 Jul;10(7):323. doi: 10.1007/s13205-020-02321-2. Epub 2020 Jun 29.
2
[Deletion of a dynamic surface loop improves thermostability of (R)-selective amine transaminase from Aspergillus terreus].
Sheng Wu Gong Cheng Xue Bao. 2017 Dec 25;33(12):1923-1933. doi: 10.13345/j.cjb.170279.
4
Improving the Thermostability and Activity of Transaminase From by Charge-Charge Interaction.
Front Chem. 2021 Apr 14;9:664156. doi: 10.3389/fchem.2021.664156. eCollection 2021.
5
Improving thermostability of (R)-selective amine transaminase from Aspergillus terreus through introduction of disulfide bonds.
Biotechnol Appl Biochem. 2018 Mar;65(2):255-262. doi: 10.1002/bab.1572. Epub 2017 Jul 17.
6
Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis.
J Biotechnol. 2019 Mar 10;293:8-16. doi: 10.1016/j.jbiotec.2019.01.007. Epub 2019 Jan 28.
8
Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
Enzyme Microb Technol. 2015 Oct;78:74-83. doi: 10.1016/j.enzmictec.2015.06.013. Epub 2015 Jun 22.
9
A Single Mutation Increases the Thermostability and Activity of Amine Transaminase.
Molecules. 2019 Mar 27;24(7):1194. doi: 10.3390/molecules24071194.
10
Enhancement of the thermostability and the catalytic efficiency of Bacillus pumilus CBS protease by site-directed mutagenesis.
Biochimie. 2010 Apr;92(4):360-9. doi: 10.1016/j.biochi.2010.01.008. Epub 2010 Jan 21.

引用本文的文献

1
Exploring the Stability and Substrate Profile of Transaminase from Silicibacter pomeroyi with Ancestral Sequence Reconstruction.
Chembiochem. 2025 Jul 11;26(13):e202500155. doi: 10.1002/cbic.202500155. Epub 2025 May 30.
3
Improving the thermostability and modulating the inulin profile of inulosucrase through rational glycine-to-proline substitution.
RSC Adv. 2024 Jan 11;14(4):2346-2353. doi: 10.1039/d3ra06896j. eCollection 2024 Jan 10.
4
Tuning Thermostability and Catalytic Efficiency of Aflatoxin-Degrading Enzyme by Error-prone PCR.
Appl Microbiol Biotechnol. 2023 Aug;107(15):4833-4843. doi: 10.1007/s00253-023-12610-4. Epub 2023 Jun 10.
5
Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis.
AMB Express. 2023 Jan 19;13(1):7. doi: 10.1186/s13568-023-01513-2.
6
Novel transaminases from thermophiles: from discovery to application.
Microb Biotechnol. 2022 Jan;15(1):305-317. doi: 10.1111/1751-7915.13940. Epub 2021 Oct 29.

本文引用的文献

1
Engineering the heparin-binding pocket to enhance the catalytic efficiency of a thermostable heparinase III from Bacteroides thetaiotaomicron.
Enzyme Microb Technol. 2020 Jun;137:109549. doi: 10.1016/j.enzmictec.2020.109549. Epub 2020 Mar 9.
2
Improving the Thermostability of Lipase Through Site-Directed Mutagenesis Based on B-Factor Analysis.
Front Microbiol. 2020 Mar 3;11:346. doi: 10.3389/fmicb.2020.00346. eCollection 2020.
3
Improving the Thermostability of Glutamate Decarboxylase from Lactobacillus brevis by Consensus Mutagenesis.
Appl Biochem Biotechnol. 2020 Aug;191(4):1456-1469. doi: 10.1007/s12010-020-03283-0. Epub 2020 Mar 3.
4
Improving the thermostability and activity of Paenibacillus pasadenensis chitinase through semi-rational design.
Int J Biol Macromol. 2020 May 1;150:9-15. doi: 10.1016/j.ijbiomac.2020.02.033. Epub 2020 Feb 6.
6
Efficient biosynthesis of (R)-3-amino-1-butanol by a novel (R)-selective transaminase from Actinobacteria sp.
J Biotechnol. 2019 Apr 10;295:49-54. doi: 10.1016/j.jbiotec.2019.02.008. Epub 2019 Mar 7.
7
Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis.
J Biotechnol. 2019 Mar 10;293:8-16. doi: 10.1016/j.jbiotec.2019.01.007. Epub 2019 Jan 28.
10
Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.
Mol Biotechnol. 2018 Mar;60(3):226-235. doi: 10.1007/s12033-018-0059-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验