Suppr超能文献

AlO沉积方法对聚对二甲苯C的影响:纳米柱状表面的研究重点

Effect of the AlO Deposition Method on Parylene C: Highlights on a Nanopillar-Shaped Surface.

作者信息

Njeim Joanna, Alamarguy David, Tu Xiaolong, Durnez Alan, Lafosse Xavier, Chretien Pascal, Madouri Ali, Ren Zhuoxiang, Brunel David

机构信息

Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252 Paris, France.

Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192 Gif-sur-Yvette, France.

出版信息

ACS Omega. 2020 Jun 24;5(26):15828-15834. doi: 10.1021/acsomega.0c00735. eCollection 2020 Jul 7.

Abstract

Parylene C (PC) has attracted tremendous attention throughout the past few years due to its extraordinary properties such as high mechanical strength and biocompatibility. When used as a flexible substrate and combined with high-κ dielectrics such as aluminum oxide (AlO), the AlO/PC stack becomes very compelling for various applications in fields such as biomedical microsystems and microelectronics. For the latter, the atomic layer deposition of oxides is particularly needed as it allows the deposition of high-quality and nanometer-scale oxide thicknesses. In this work, atomic layer deposition (ALD) and electron beam physical vapor deposition (EBPVD) of AlO on a 15 μm-thick PC layer are realized and their effects on the AlO/PC resulting stack are investigated via X-ray photoelectron spectroscopy combined with atomic force microscopy. An ALD-based AlO/PC stack is found to result in a nanopillar-shaped surface, while an EBPVD-based AlO/PC stack yields an expected smooth surface. In both cases, the AlO/PC stack can be easily peeled off from the reusable SiO substrate, resulting in a flexible AlO/PC film. These fabrication processes are economic, high yielding, and suitable for mass production. Although ALD is particularly appreciated in the semiconducting industry, EBPVD is here found to be better for the realization of the AlO/PC flexible substrate for micro- and nanoelectronics.

摘要

聚对二甲苯C(PC)在过去几年中因其诸如高机械强度和生物相容性等非凡特性而备受关注。当用作柔性衬底并与诸如氧化铝(AlO)等高κ电介质结合时,AlO/PC堆叠对于生物医学微系统和微电子等领域的各种应用变得非常有吸引力。对于后者,特别需要氧化物的原子层沉积,因为它允许沉积高质量且纳米级厚度的氧化物。在这项工作中,实现了在15μm厚的PC层上进行AlO的原子层沉积(ALD)和电子束物理气相沉积(EBPVD),并通过结合原子力显微镜的X射线光电子能谱研究了它们对所得AlO/PC堆叠的影响。发现基于ALD的AlO/PC堆叠会产生纳米柱状表面,而基于EBPVD的AlO/PC堆叠会产生预期的光滑表面。在这两种情况下,AlO/PC堆叠都可以很容易地从可重复使用的SiO衬底上剥离下来,从而得到柔性的AlO/PC薄膜。这些制造工艺经济、产量高且适合大规模生产。尽管ALD在半导体行业中特别受青睐,但在此发现EBPVD更适合用于实现用于微电子和纳米电子的AlO/PC柔性衬底。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fe6/7345438/41674e959949/ao0c00735_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验