Li Chao, Sun Zhongti, Yang Tian, Yu Lianghao, Wei Nan, Tian Zhengnan, Cai Jingsheng, Lv Jiaze, Shao Yuanlong, Rümmeli Mark H, Sun Jingyu, Liu Zhongfan
College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China.
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.
Adv Mater. 2020 Aug;32(33):e2003425. doi: 10.1002/adma.202003425. Epub 2020 Jul 12.
Zinc metal anode has garnered a great deal of scientific and technological interest. Nevertheless, major bottlenecks restricting its large-scale utilization lie in the poor electrochemical stability and unsatisfactory cycling life. Herein, a Janus separator is developed via directly growing vertical graphene (VG) carpet on one side of commercial glass fiber separator throughout chemical vapor deposition. A simple air plasma treatment further renders the successful incorporation of oxygen and nitrogen heteroatoms on bare graphene. Thus-derived 3D VG scaffold affording large surface area and porous structure can be viewed as a continuation of planar zinc anode. In turn, the Janus separator harvests homogenous electric field distribution and lowered local current density at the interface of the anode/electrolyte, as well as harnesses favorable zincophilic feature for building-up uniform Zn ionic flux. Such a separator engineering enables an impressive rate and cycle performance (93% over 5000 cycles at 5 A g ) for Zn-ion hybrid capacitors and outstanding energy density (182 Wh kg ) for V O //Zn batteries, respectively. This strategy with large scalability and cost-effectiveness represents a universal route to protect prevailing metal anodes (Zn, Na, K) in rechargeable batteries.
锌金属负极已引起了大量的科技关注。然而,限制其大规模应用的主要瓶颈在于较差的电化学稳定性和不尽人意的循环寿命。在此,通过在商用玻璃纤维隔膜的一侧通过化学气相沉积直接生长垂直石墨烯(VG)毡来制备一种双面隔膜。简单的空气等离子体处理进一步使氧和氮杂原子成功掺入裸石墨烯中。由此得到的具有大表面积和多孔结构的三维VG支架可被视为平面锌负极的延续。反过来,这种双面隔膜在阳极/电解质界面处实现了均匀的电场分布并降低了局部电流密度,同时利用了良好的亲锌特性来建立均匀的锌离子通量。这种隔膜工程分别使锌离子混合电容器具有令人印象深刻的倍率和循环性能(在5 A g下5000次循环后保持93%)以及使V₂O₅//Zn电池具有出色的能量密度(182 Wh kg)。这种具有高可扩展性和成本效益的策略代表了一种保护可充电电池中现有金属负极(锌、钠、钾)的通用途径。